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The choice of a finitely supported distribution is viewed as a degenerate bilinear
form on the polynomials in the spectral parametesind the matrix representing
multiplication byz in terms of an orthogonal basis is constructed. It is then shown
that the same induced time dependence for finitely supported distributions which
gives theith KP flow under the dual isomorphism induces ttteflow of the Toda
hierarchy on the matrix. The corresponding solution is/anparticle, finite, non-
periodic Toda solution wherg " is the cardinality of the support @f plus the sum

of the orders of the highest derivative taken at each point.1997 American
Institute of Physics.S0022-248807)00501-X

I. INTRODUCTION

Recent interest in the Toda lattickas stemmed from its role in relating theories of quantum
gravity to soliton theory. This correspondence is given by a measdpe determined by the
partition function(i.e., the “specific heat) of matrix models which is interpreted as an inner
product on time-dependent polynomials in the spectral paramétehat construction, the poly-
nomials are written in terms of an orthogonal basis with respect to this nondegenerate inner
product and the Toda lattice is determined as the matrix representing multiplication in the spectral
parameter.

The present paper replaces integration with respect to the megsing an arbitrary finitely
supported distribution. It is then shown that the same correspondence between orthogonal poly-
nomials and integrable systems continues to hold in the case of the induced degenerate bilinear
form. This relates the Toda hierarchy to techniques for the constructierfuictions of the KP
hierarchy® using finitely supported distributions.

It should be noted that there is an intersection of the construction developed below and that
discussed in the opening paragraph. In particular, finitely supported distributions which are linear
combinations of Dirac delta functions can be represented as Stieltjes integrals with respect to
Heaviside function§.The solutions constructed from such distributions by the method below are
known’ and are the same as those which would be given by the corresponding measure. However,
finitely supported distributions involving differentiatidne., u«;>0) and the Toda lattices which
they generate are discussed here for the first time.

II. ASSOCIATING A JACOBI MATRIX TO A DISTRIBUTION

Let ¢ be the finitely supported distribution

m Mi
C:izl 5}”0;0 aij(?JZ, (21)

where §, is the delta function evaluating its argumentzat\, the constanta; e C are distinct,
d, is the differential operatat/d,, anda;; € Cwith i, # 0. (In fact, the discussion to follow only
depends upor as determined up to a nonzero constant multiple, and so the coefficigrtan
be viewed as elements &f' ~1C.) Then let./" be the integer
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m

i=1

wherem and u; are as in(ll.1).
Associated tac we have the symmetric bilinear form a@iiz] defined by

(p,a)=c(pq).

Note that given two polynomials
n—1

n-1
p:i21 @z, q:; Biz

of degree less than,

Bo
<p1q>:(a01 "'lan—l)'Tn' :
Bn-1
where
c(l) ... c(Y
T.=| ¢ P 2.2
c(2"YH ... @Y

A. The annihilator of ¢

Any function sufficiently differentiable on the support ofacts on the right by composition:

cop(f)=c(pf).

In particular, we may associate toits annihilator inC[ z].
Definition I1.1: For any distributiorc, let | .CC[z] denote the ideal

l.={pe([z]|cop=0}.

Lemma Il.1; Let ¢ be written in the forifil.1) and let

crc(z>:iljl (z—N\p)HHE,

Then |, is the ideal generated by (2):
l.=0o[z].

Proof: Sincec ° 0,=0, it is clear thator (z)([z]Cl.. Then, letp(z) e | be written in the
form

p(2)=0a(2)r(2), f(Z)ZiHl (=), (2.3
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whereq(z) e ([z] is such thagj(\;) # 0. Suppose thaf;< u;+1 for some particular &j<m.
Then for the polynomial

s(2)=(z—\pH ] (z—np)mitt
i#]

we have that the distribution
COros=k5M, k=(,uj!)amj#0,

is a nonzero distribution evaluating its argumeniatwithout differentiation. But then, since
o p=ceqr=0 we have that

0=ceqr(s(z))=cers(q(z))=kq(\;),

which implies thatq(\;)=0, contradicting the assumption. Consequently, each elemeht of
written in form (11.3) hasy;=u;+1 andl .Co.(2)([z].
Since degr.=3" ,(u;+1)=.7/", we then have the following.
Corollary II.1: There exists a polynomial p ([ z] with deg p=n such that @ p=0 if and only
if n=./".
B. A basis for ([ z]

The choice of a generic distributianuniquely specifies a basis f6f z] as follows.
Definition 11.2: For any positive integer, let ; denote the determinant

7i=|Til,

where T; is the symmetric matrix described i#hl.2). We say thatc is regular if =, # 0 for
i=1,...,/" LetZ?denote the vector space of polynomials of degree less thalf c is regular,
then the Gram—Schmidt orthogonalization specifies a unique bpgis. .. ,p 1} of 2” such
that

pi(2)=2+0(zZ71)

and which is orthogonal with respect to the fo¢m- ). Furthermore, since ,-_, # 0 the form is
nondegenerate aw and so

<pi ,pi>7&0, i=0,...,/—1.

It will now be supposed that is in fact regular and that the polynomials; for
i=0,...,7 =1 have been fixed by the Gram-Schmidt orthogonalization. We may then define

p,+i(2)=Z'0.2), i=01,....

By Lemma ll.1,p ,-.; € |, and so it is in the kernel of the form. Therefore, the basis of monic
polynomials{p;|i=0} for ([Zz] is orthogonal with respect to the form, but the form is degenerate.

C. The tri-diagonal matrix

The significance of the basis specified in the preceding section is that multiplicatinrisby
represented as a tri-diagonal Jacobi matrix in terms of this basis.
Proposition I1.1: There exist numbers and b in C such that

Zp=pis1tbipi+api-,
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for all i >0.
Proof: Since each polynomigd; is monic of degree, we certainly have

ZPn=Pns1t ;0 ;pj
for some constantg; . But then applying the functiondp; ,-) to zp, yields

(Pi»ZPn)=(zZpi ,Pn) =(Pi+1 1+ biPi+a;ipi_1,Pn),

which is zero ifi<n—2. On the other hand, one could also compute this as

(Pi»zpn)=(pi,a@ipi) = @i(pi ,Pi)-

If i</, then{p;,p;) # 0 and saw;=0. Finally, fori=./", the claim is true by construction since
ZP = Pi+1-
Proposition 11.2: Denote by Athe constantp,,p,). Then
(i) An=anAn-1,
(i) a,# 0forn=0,...,/—1,
(iii) Ap/A=a,- - -ayy 4 for k<n<./.

Proof: The first relationship can be found by using the fact fz1,q)=(p,zqg) and so

<an1pn—1>:<pn+1apn—l>+bn<pn :pn—1>+an<pn—1vpn—l>:an<pn—1ﬂpn—1>

is also equal to

<pnxzpn—1>:<pnapn>!

producing the desired result.

Then, by the nondegeneracy of the bilinear form ow, we have that
anAn_1=A,=(pn,pn) # 0 for 0<n=<_/"—1. The final claim clearly follows from the first by an
inductive argument.

Associate tac the NX N tri-diagonal matrix

b 1 0 0 O
a, by 1 0 0

L:
O a, b, 1 0

Outside of the principal/ X./" minor, this matrix is simply the shift matrix with 1s along the
super-diagonal and zeroes elsewhere. Notelthadrresponds to multiplication kg in C[ z] with
basis{p;}. This is particularly important in the next result.

Notation: Denote byL « the element in th¢th column andkth row of the matrix_'. Note that
sincelL is indexed byNXN the top left corner |S_00 and notL 3 ; as one might expect.

Proposition 11.3:(Z'py,pn) = L kAn-

Proof: By orthogonality, the only significant term mpy is thep, term in its expansion in the
orthogonal basis. However, this is simfly ,p,. S0(zpc,Pn)=(Lp kPn,Pn)=Lp An.

By the symmetry of the form used in Proposition I1.3, we then also have the following.

Corollary 11.2: Ly, \Ay= kanAk
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lll. TIME DEPENDENCE

Now suppose that is an arbitrary, i.e., not necessarily regular, finitely supported distribution.
To it we associate the time-dependent distribution

©

c=co expy, t;Z'.
i=1

Note that /3=./". and, moreoverg;= o, since neither the support nor the highest derivative
taken at each point is affected by this composition. Whenewét, ,t,, . ..) ischosen such that
C is regular, we may associate to it a basis of polynomials and a tri-diagonal matrix by the method
of the preceding section. Thus, one is led to consider a Has{g,t)} of polynomials and a
time-dependent matrik (t) which are defined wheneveris regular.

Note: This time dependence for distributions was introduced in Ref. 8 because it induces the
KP flow on the Sato Grassmannian under the dual isomorphism. In fact, this is a convenient way
to prove the next claim:

Proposition 111.1: The distribution ds regular for almost every value of= (t;,t,,- - ).

Proof: By Corollary I.1 the distributions coZ are linearly independent for

n=0,...,/ —1. Then the determinants, are nonzero, time-dependent functions
c(1) - (2"
To(t)= -
c(z") ¢z
c(exp St,2) L " Yt e(exp 2tz
I Yat) te(expStiz) Yo" Te(exp StiZ)

In fact, if we letV; , denote the set of polynomials in the kernel of the distributionsz' for
i=0, ... n, then the Hilbert closure of "V , is the a poinW,(t) in the Sato Grassmanni&sr
and the Wronskian determinant above gives the corresponding tau function for the KP hiérarchy.
So, we can cite Ref. 9 to show that these functions have isolated zeros. The distriigtithen
regular on the complement of the zeros of thtunctions, for i=0, ...,/ —1.

Note: Tau functions determined from symmetric Wronskian matrices or Hankel determinants
of the form above are known to be associated with finite Toda lattftés.

IV. DIFFERENTIAL EQUATIONS

This section will determine differential equations satisfied by the maiftx in the temporal
variablet; . Throughout the remainder, primé) (will be used to denote the derivative with respect
to this variable. Since the forr,-) is now taken to be the time-dependent form specified by
c, its derivative is given by the following lemma.

Lemma IV.1(p,q)' =(z'p,q)+(p’.a)+(p.q’).
Proof:

(p.a)’ = (c(e*?pg))’ =c(eX?(Zpg+p'q+pg’))=(Zp.a)y+(p’.q)+(p.q’).

The leading coefficients of the polynomiglg are constant, and so they satisfy differential
equations of the form

n-1
Pr= 2, CiPx. (4.3
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Define the time-dependent functiofy by this formula. In fact, sincer; is constant in time,

Thus, it is clear thaCp=0 for n=./".
Proposition 1IV.1: The coefficientsdor k<n<./"in (IV.1) can be written either as

A
CE=—A—: " (4.2
or
Ci=—Ln- (4.3

In particular, C¢=0 if i <n—k.
Proof: This can be seen by differentiating the equation

(Pn,PK)=0

because then you get

(2'Pn,pi) +(Ph P + Pk Py =0
which (using Proposition 1l.8implies that
CRA=—L} A,

Sincek<./", A, # 0 and we may solve fo€} yielding (IV.2). Then, substituting foA, by the
formula in Corollary 11.2,

CRA=— ik,nAk

which leads to the equivalent forrV.3). Furthermore, it is elementary to determine that

nk=0 if i<n—k merely from the tri-diagonal form of the matrix.

The main result of the present paper is the equations of motion satisfiaddndb; .
Theorem IV.1: The dependence of the distributionon the time variable jtinduces the
equations of motion

br;:an-%—lLin-%—l,n_an in,n—l (4.4)
and

an=(by—bn_)Lp 10t Ly 11— Lnogp- (4.9
Proof: Since the actions af/dt; and multiplication byz commute, we can equate the coef-
ficients ofp,, in z(p,) and @/dt;)(zp,)-

n-1 n-1

and so the coefficient gf, is justC;_, . Alternatively,
n—1

jZO C?pj + ar,1pn—1+ prlw—lan

J
E(pnﬁ—l—" bhpntanpn-1)= prl1+l+ br;pn"— b,
i
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and the coefficient op,, is just C2+1+ by, . Equating these and making use (8¥.2) yields the
equation of motion(1V.4). (Here we takd_'oy_1=0 to handle the boundary case=0.)
Similarly, equating the coefficients @f,_; in these same expressions we get that

b, ,Ch_,+C" ,=b,C"_,+a/+CN"1

Using the substitutioflV.3) and solving fora,, gives the desired forr(iV.5). (Again, Lilv,1= 0 to
handle the case=1.)

The equationglV.4) and(IV.5) are one form of the Toda hierarchy and can be written in the
Lax form

J _ i
a_tiL_[L’(L)*]’

where the minus subscript indicates the projection to the lower triangular part. Since the super-
diagonal elements are the only nonzero elements outside the prin¢ipal/” minor, this is in
fact an./ -particle finite nonperiodic Toda lattice.

Theorem IV.2: Let ¢ be any finitely supported distribution ang-c o exp3tZ. Then the
corresponding matrix L is an/” particle finite nonperiodic Toda lattice

V. REMARKS

As usual® one may write the functiong;(t) andb;(t) in terms of ther-functions r;(t):

g TiTi+2 b-=ilo Ti+1
e
fori=0, ...,/ —1 wherery=1. This is an easier way to construct the solution corresponding to

a distributionc than determining the orthogonal basis of polynomials as above.
The pointsW; e Gr described in Proposition 111.1 are clearly seen to be related by the formula

ZWL 1 CW,

and are therefore related by Darboux transformations. As shown in Ref. 10, these are precisely the
Darboux transformations which preserve theboson form of the corresponding KP solutions.
The geometric spectral data is a line bundle over a rational curve with one singularity introduced
by bringing together the points on a desingularization with coordinateand multiplicity
mi+i+1. The inclusion of the coordinate rings induces covering maps from the more singular to
the less singular curves.

One may wish to consider the moduli space of all distributiongith some given value of
/" so as to have a moduli of -particle nonperiodic Toda solutions. The different formscof
leading to an/ -particle system are indexed by the Young diagrams of withblocks. Given
such a Young diagram, a distribution may be specified by attaching a distinctvatué’ to each
column and a constant;; € C to thej+ 1st block in the column. The different diagrams lead to
qualitatively different behaviors in the corresponding solutions. In particulars thactions give
KP solitons when the Young diagrams consists entirely of columns of length one and, alterna-
tively, they give rational KP solutions when the Young diagram has only one column.
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