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Orthogonal polynomials and the finite Toda lattice
Alex Kasman
Department of Mathematics, University of Georgia

~Received 11 March 1996; accepted for publication 12 August 1996!

The choice of a finitely supported distribution is viewed as a degenerate bilinear
form on the polynomials in the spectral parameterz and the matrix representing
multiplication byz in terms of an orthogonal basis is constructed. It is then shown
that the same induced time dependence for finitely supported distributions which
gives thei th KP flow under the dual isomorphism induces thei th flow of the Toda
hierarchy on the matrix. The corresponding solution is anN particle, finite, non-
periodic Toda solution whereN is the cardinality of the support ofc plus the sum
of the orders of the highest derivative taken at each point. ©1997 American
Institute of Physics.@S0022-2488~97!00501-X#

I. INTRODUCTION

Recent interest in the Toda lattice1 has stemmed from its role in relating theories of quant
gravity to soliton theory.2 This correspondence is given by a measuredr determined by the
partition function~i.e., the ‘‘specific heat’’! of matrix models which is interpreted as an inn
product on time-dependent polynomials in the spectral parameter.3 In that construction, the poly-
nomials are written in terms of an orthogonal basis with respect to this nondegenerate
product and the Toda lattice is determined as the matrix representing multiplication in the sp
parameter.

The present paper replaces integration with respect to the measuredr by an arbitrary finitely
supported distribution. It is then shown that the same correspondence between orthogona
nomials and integrable systems continues to hold in the case of the induced degenerate
form. This relates the Toda hierarchy to techniques for the construction oft-functions of the KP
hierarchy4,5 using finitely supported distributions.

It should be noted that there is an intersection of the construction developed below an
discussed in the opening paragraph. In particular, finitely supported distributions which are
combinations of Dirac delta functions can be represented as Stieltjes integrals with resp
Heaviside functions.6 The solutions constructed from such distributions by the method below
known7 and are the same as those which would be given by the corresponding measure. Ho
finitely supported distributions involving differentiation~i.e.,m i.0) and the Toda lattices which
they generate are discussed here for the first time.

II. ASSOCIATING A JACOBI MATRIX TO A DISTRIBUTION

Let c be the finitely supported distribution

c5(
i51

m

dl i
+(
j50

m i

a i j ]z
j , ~2.1!

wheredl is the delta function evaluating its argument atz5l, the constantsl i P C are distinct,
]z is the differential operator]/]z , anda i j P Cwith a im i

Þ 0. ~In fact, the discussion to follow only
depends uponc as determined up to a nonzero constant multiple, and so the coefficientsa i j can
be viewed as elements ofPN 21C.! Then letN be the integer
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N 5m1(
i51

m

m i ,

wherem andm i are as in~II.1!.
Associated toc we have the symmetric bilinear form onC@z# defined by

^p,q&5c~pq!.

Note that given two polynomials

p5 (
i51

n21

a iz
i , q5 (

i51

n21

b iz
i

of degree less thann,

^p,q&5~a0 , . . . ,an21!•Tn•S b0

A

bn21

D
where

Tn5S c~1! . . . c~zn21!

A � A

c~zn21! . . . c~z2n21!
D . ~2.2!

A. The annihilator of c

Any function sufficiently differentiable on the support ofc acts on the right by composition

c+p~ f !5c~p f !.

In particular, we may associate toc its annihilator inC@z#.
Definition II.1: For any distributionc, let I c,C@z# denote the ideal

I c5$pPC@z#uc+p[0%.

Lemma II.1: Let c be written in the form(II.1) and let

sc~z!5)
i51

m

~z2l i !
m i11.

Then Ic is the ideal generated bysc(z):

I c5scC@z#.

Proof: Sincec + sc[0, it is clear thatsc(z)C@z#,I c . Then, letp(z) P I c be written in the
form

p~z!5q~z!r ~z!, r ~z!5)
i51

m

~z2l i !
g i, ~2.3!
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249Alex Kasman: Orthogonal polynomials and the finite Toda lattice
whereq(z) P C@z# is such thatq(l i) Þ 0. Suppose thatg j,m j11 for some particular 1< j<m.
Then for the polynomial

s~z!5~z2l j !
m j2g j)

iÞ j
~z2l i !

m i11

we have that the distribution

c+r +s5kdl j
, k5~m j ! !a jm j

Þ0,

is a nonzero distribution evaluating its argument atl j without differentiation. But then, sincec
+ p5c + qr[0 wehave that

05c+qr„s~z!…5c+rs„q~z!…5kq~l j !,

which implies thatq(l j )50, contradicting the assumption. Consequently, each element oI c
written in form ~II.3! hasg i>m i11 andI c,sc(z)C@z#.

Since degsc5S i51
m (m i11)5N , we then have the following.

Corollary II.1: There exists a polynomial pP C@z# with deg p5n such that c+ p[0 if and only
if n>N .

B. A basis for C@z#

The choice of a generic distributionc uniquely specifies a basis forC@z# as follows.
Definition II.2: For any positive integeri , let t i denote the determinant

t i5uTi u,

whereTi is the symmetric matrix described in~II.2!. We say thatc is regular if t i Þ 0 for
i51, . . . ,N . LetP denote the vector space of polynomials of degree less thanN . If c is regular,
then the Gram–Schmidt orthogonalization specifies a unique basis$p0 , . . . ,pN 21% of P such
that

pi~z!5zi1O~zi21!

and which is orthogonal with respect to the form^•,•&. Furthermore, sincetN 21 Þ 0 the form is
nondegenerate onP and so

^pi ,pi&Þ0, i50, . . . ,N 21.

It will now be supposed thatc is in fact regular and that the polynomialspi for
i50, . . . ,N 21 have been fixed by the Gram–Schmidt orthogonalization. We may then de

pN 1 i~z!5zisc~z!, i50,1, . . . .

By Lemma II.1,pN 1 i P I c , and so it is in the kernel of the form. Therefore, the basis of mo
polynomials$pi u i>0% for C@z# is orthogonal with respect to the form, but the form is degener

C. The tri-diagonal matrix

The significance of the basis specified in the preceding section is that multiplication bz is
represented as a tri-diagonal Jacobi matrix in terms of this basis.

Proposition II.1: There exist numbers ai and bi in C such that

zpi5pi111bipi1aipi21
J. Math. Phys., Vol. 38, No. 1, January 1997
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250 Alex Kasman: Orthogonal polynomials and the finite Toda lattice
for all i.0.
Proof: Since each polynomialpi is monic of degreei , we certainly have

zpn5pn111(
j50

n

a j pj

for some constantsa j . But then applying the functional^pi ,•& to zpn yields

^pi ,zpn&5^zpi ,pn&5^pi111bipi1aipi21 ,pn&,

which is zero ifi,n22. On the other hand, one could also compute this as

^pi ,zpn&5^pi ,a i pi&5a i^pi ,pi&.

If i,N , then^pi ,pi& Þ 0 and soa i50. Finally, for i>N , the claim is true by construction sinc
zpi5pi11.

Proposition II.2: Denote by An the constant̂ pn ,pn&. Then
~i! An5anAn21 ,
~i! an Þ 0 forn50, . . . ,N 21,
~iii ! An /Ak5an•••ak11 for k,n,N .

Proof: The first relationship can be found by using the fact that^zp,q&5^p,zq& and so

^zpn ,pn21&5^pn11 ,pn21&1bn^pn ,pn21&1an^pn21 ,pn21&5an^pn21 ,pn21&

is also equal to

^pn ,zpn21&5^pn ,pn&,

producing the desired result.
Then, by the nondegeneracy of the bilinear form onP , we have that

anAn215An5^pn ,pn& Þ 0 for 0<n<N 21. The final claim clearly follows from the first by a
inductive argument.

Associate toc theN3N tri-diagonal matrix

L5S b0 1 0 0 0 . . .

a1 b1 1 0 0

0 a2 b2 1 0

A � � �

D .
Outside of the principalN 3N minor, this matrix is simply the shift matrix with 1s along th
super-diagonal and zeroes elsewhere. Note thatL corresponds to multiplication byz in C@z# with
basis$pi%. This is particularly important in the next result.

Notation:Denote byL j ,k
i the element in thej th column andkth row of the matrixLi . Note that

sinceL is indexed byN3N, the top left corner isL0,0
i and notL1,1

i as one might expect.
Proposition II.3: ^zipk ,pn&5Ln,k

i An .
Proof: By orthogonality, the only significant term inzipk is thepn term in its expansion in the

orthogonal basis. However, this is simplyLn,k
i pn . So ^zpk ,pn&5^Ln,k

i pn ,pn&5Ln,k
i An .

By the symmetry of the form used in Proposition II.3, we then also have the following.
Corollary II.2: Ln,k

i An5Lk,n
i Ak .
J. Math. Phys., Vol. 38, No. 1, January 1997
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251Alex Kasman: Orthogonal polynomials and the finite Toda lattice
III. TIME DEPENDENCE

Now suppose thatc is an arbitrary, i.e., not necessarily regular, finitely supported distribut
To it we associate the time-dependent distribution

ĉ5c+ exp(
i51

`

t iz
i .

Note thatN ĉ5N c and, moreover,s ĉ5sc since neither the support nor the highest derivat
taken at each point is affected by this composition. Whenevert5(t1 ,t2 , . . . ) is chosen such tha
ĉ is regular, we may associate to it a basis of polynomials and a tri-diagonal matrix by the m
of the preceding section. Thus, one is led to consider a basis$pi(z,t)% of polynomials and a
time-dependent matrixL(t) which are defined wheneverĉ is regular.

Note:This time dependence for distributions was introduced in Ref. 8 because it induce
KP flow on the Sato Grassmannian under the dual isomorphism. In fact, this is a convenie
to prove the next claim:

Proposition III.1: The distribution cˆ is regular for almost every value oft5(t1 ,t2 ,•••).
Proof: By Corollary II.1 the distributions c+ zi are linearly independent fo

n50, . . . ,N 21. Then the determinantstn are nonzero, time-dependent functions

tn~ t!5U ĉ~1! ••• ĉ~zn!

�

ĉ~zn! ĉ~z2n21!
U

5U c~exp(t iz
i ! •••

]n21/]t1
n21c~exp(t iz

i !

�

]n21/]t1
n21c~exp(t iz

i ! . . . ]2n21/]t1
2n21c~exp(t iz

i !
U .

In fact, if we letVĉ,n denote the set of polynomials in the kernel of the distributionsĉ + zi for
i50, . . . ,n, then the Hilbert closure ofz2nVĉ,n is the a pointWn(t) in the Sato GrassmannianGr
and the Wronskian determinant above gives the corresponding tau function for the KP hiera4

So, we can cite Ref. 9 to show that these functions have isolated zeros. The distributionĉ is then
regular on the complement of the zeros of thet-functionst i for i50, . . . ,N 21.

Note:Tau functions determined from symmetric Wronskian matrices or Hankel determin
of the form above are known to be associated with finite Toda lattices.10–12

IV. DIFFERENTIAL EQUATIONS

This section will determine differential equations satisfied by the matrixL(t) in the temporal
variablet i . Throughout the remainder, prime (8) will be used to denote the derivative with respe
to this variable. Since the form̂•,•& is now taken to be the time-dependent form specified
ĉ, its derivative is given by the following lemma.

Lemma IV.1:̂ p,q&85^zip,q&1^p8,q&1^p,q8&.
Proof:

^p,q&85„c~eSt j z
j
pq!…85c„eSt j z

j
~zipq1p8q1pq8!)5^zip,q&1^p8,q&1^p,q8&.

The leading coefficients of the polynomialspn are constant, and so they satisfy different
equations of the form

pn85 (
k50

n21

Ck
npk . ~4.1!
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252 Alex Kasman: Orthogonal polynomials and the finite Toda lattice
Define the time-dependent functionsCk
n by this formula. In fact, sinces ĉ is constant in time,

pn850 for n>N .

Thus, it is clear thatCk
n50 for n>N .

Proposition IV.1: The coefficients Ck
n for k,n,N in (IV.1) can be written either as

Ck
n52

An

Ak
Ln,k
i ~4.2!

or

Ck
n52Lk,n

i . ~4.3!

In particular, Ck
n50 if i,n2k.

Proof: This can be seen by differentiating the equation

^pn ,pk&50

because then you get

^zipn ,pk&1^pn8 ,pk&1^pk8 ,pn&50

which ~using Proposition II.3! implies that

Ck
nAk52Ln,k

i An .

Sincek,N , Ak Þ 0 and we may solve forCk
n yielding ~IV.2!. Then, substituting forAn by the

formula in Corollary II.2,

Ck
nAk52Lk,n

i Ak

which leads to the equivalent form~IV.3!. Furthermore, it is elementary to determine th
Ln,k
i 50 if i,n2k merely from the tri-diagonal form of the matrix.
The main result of the present paper is the equations of motion satisfied byai andbi .
Theorem IV.1: The dependence of the distribution cˆ on the time variable ti induces the

equations of motion

bn85an11Ln11,n
i 2anLn,n21

i ~4.4!

and

an85~bn2bn21!Ln21,n
i 1Ln21,n11

i 2Ln22,n
i . ~4.5!

Proof: Since the actions of]/]t i and multiplication byz commute, we can equate the coe
ficients ofpn in z(pn8) and (]/]t i)(zpn).

zpn85z (
j50

n21

Cj
npj5 (

j50

n21

Cj
n~pj111bjpj1ajpj21!

and so the coefficient ofpn is justCn21
n . Alternatively,

]

]t i
~pn111bnpn1anpn21!5pn118 1bn8pn1bnS (

j50

n21

Cj
npj D 1an8pn211pn218 an
J. Math. Phys., Vol. 38, No. 1, January 1997
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253Alex Kasman: Orthogonal polynomials and the finite Toda lattice
and the coefficient ofpn is justCn
n111bn8 . Equating these and making use of~IV.2! yields the

equation of motion~IV.4!. ~Here we takeL0,21
i 50 to handle the boundary casen50.!

Similarly, equating the coefficients ofpn21 in these same expressions we get that

bn21Cn21
n 1Cn22

n 5bnCn21
n 1an81Cn21

n11 .

Using the substitution~IV.3! and solving foran8 gives the desired form~IV.5!. ~Again,L1,21
i 50 to

handle the casen51.!
The equations~IV.4! and~IV.5! are one form of the Toda hierarchy and can be written in

Lax form

]

]t i
L5@L,~Li !2#,

where the minus subscript indicates the projection to the lower triangular part. Since the
diagonal elements are the only nonzero elements outside the principalN 3N minor, this is in
fact anN -particle finite nonperiodic Toda lattice.

Theorem IV.2: Let c be any finitely supported distribution and cˆ5c + expStiz
i. Then the

corresponding matrix L is anN particle finite nonperiodic Toda lattice.

V. REMARKS

As usual,3 one may write the functionsai(t) andbi(t) in terms of thet-functionst i(t):

ai5
t it i12

t i11
2 , bi5

]

]t1
log

t i11

t i
,

for i50, . . . ,N 21 wheret0[1. This is an easier way to construct the solution correspondin
a distributionc than determining the orthogonal basis of polynomials as above.

The pointsWi P Gr described in Proposition III.1 are clearly seen to be related by the form

zWi11,Wi

and are therefore related by Darboux transformations. As shown in Ref. 10, these are precis
Darboux transformations which preserve theN-boson form of the corresponding KP solution
The geometric spectral data is a line bundle over a rational curve with one singularity intro
by bringing together the points on a desingularization with coordinatesl i and multiplicity
m i1 i11. The inclusion of the coordinate rings induces covering maps from the more singu
the less singular curves.

One may wish to consider the moduli space of all distributionsc with some given value of
N so as to have a moduli ofN -particle nonperiodic Toda solutions. The different forms ofc
leading to anN -particle system are indexed by the Young diagrams of withN blocks. Given
such a Young diagram, a distribution may be specified by attaching a distinct valuel i P C to each
column and a constanta i j P C to the j11st block in the column. The different diagrams lead
qualitatively different behaviors in the corresponding solutions. In particular, thet functions give
KP solitons when the Young diagrams consists entirely of columns of length one and, al
tively, they give rational KP solutions when the Young diagram has only one column.
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