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Abstract. It is by now well known that the wavefunctions of rational solutions to the KP
hierarchy which can be achieved as limits of the puren-soliton solutions satisfy an eigenvalue
equation for ordinary differential operators in the spectral parameter. This property is known as
‘bispectrality’ and has proved to be both interesting and useful. In this paper, it is shown that
all pure soliton solutions of the KP hierarchy (as well as their rational degenerations) satisfy
an eigenvalue equation for a non-local operator constructed by composing ordinary differential
operators in the spectral parameter withtranslation operators in the spectral parameter, and
therefore have a form of bispectrality as well.

1. Introduction

1.1. The KP hierarchy and bispectrality

Let D be the vector space spanned overC by the set

{1(n, λ) | λ ∈ C, n ∈ N}
whose elements differentiate and evaluate functions of the variablez:

1(n, λ)[f (z)] := f (n)(λ).
The elements ofD are thusfinitely supported distributionson appropriate spaces of functions
in z. For lack of a better term, we shall continue to call them distributions even though
their main use in this paper will be their application to functions of two variables. (Such
distributions were called ‘conditions’ in [20] since a KP wavefunction was specified by
requiring that it be in their kernel.) Note that ifc ∈ D and f (x, z) is sufficiently
differentiable inz on the support ofc, then f̂ (x) = c[f (x, z)] is a function ofx alone.
Furthermore, note that one may ‘compose’ a distribution with a function ofz, i.e. givenc ∈ D
andf (z) (sufficiently differentiable on the support ofc) then there exists ac′ := c ◦ f ∈ D
such that

c′(g(z)) = c(f (z)g(z)) ∀g.
The subspaces ofD can be used to generate solutions to the KP hierarchy [18] in the

following way. LetC ⊂ D be ann-dimensional subspace with basis{c1, . . . , cn}. Then,
if K = KC is the unique, monic ordinary differential operator inx of ordern having the
functionsci(exz) in its kernel (see (3)) we defineLC = K ∂

∂x
K−1 andψC = 1

zn
Kexz. The

connection to integrable systems comes from the fact that adding dependence toC on a
sequence of variablestj (j = 1, 2, . . .) by lettingC(tj ) be the space with basis

{c1 ◦ e
∑
tj z

j

, c2 ◦ e
∑
tj z

j

, . . . , cn ◦ e
∑
tj z

j }
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it follows that the ‘time dependent’ pseudo-differential operatorL = L(tj ) satisfies the
equations of the KP hierarchy [2, 10, 11, 20]

∂

∂tj
L = [(Lj )+,L].

ThewavefunctionψC(x, z) generates the corresponding subspace of the infinite-dimensional
Grassmannian Gr [18] which parametrizes KP solutions and thus it is not difficult to see
that this construction produces precisely those solutions associated to the sub-Grassmannian
Gr1 ⊂ Gr [18, 20].

Moreover, the ringAC = {p ∈ C[z]|ci ◦p ∈ C, 16 i 6 n} is necessarily non-trivial (i.e.
contains non-constant polynomials) and the operatorLp = p(L) is anordinary differential
operator for everyp ∈ AC and satisfies

LpψC(x, z) = p(z)ψC(x, z). (1)

The subject of this paper is the existence ofadditional eigenvalue equations satisfied by
ψC(x, z). In particular, we wish to consider the question of whether there exists an operator
3̂ acting on functions of the variablez such that

3̂ψC(x, z) = π(x)ψC(x, z) (2)

whereπ(x) is a non-constant function ofx. For example, the following theorem is due to
Wilson in [20].

Theorem 1.1. In addition to (1) the wavefunctionψC(x, z) is also an eigenfunction for a
ring of ordinary differential operators inz with eigenvalues depending polynomially onx if
and only ifC has a basis of distributions each of which is supported only at one point.

In other words, for this special class of KP solutions for which the coefficients of
L are rational functions ofx, the wavefunctionψC satisfies an additional eigenvalue
equation of the form (2) wherê3 is an ordinary differential operator inz andπ(x) a non-
constant polynomial inx†. Together (1) and (2) are an example ofbispectrality [3, 5, 8].
The bispectral property is already known to be connected to other questions of physical
significance such as the time-band limiting problem in tomography [7], Huygens’ principle
of wave propagation [4], quantum integrability [9, 19] and, especially in the case described
above, the self-duality of the Calogero–Moser particle system [11, 20, 21].

It is known that the only subspacesC for which the corresponding wavefunction satisfies
(1) and (2) withLp and3̂ ordinary differential operators inx andz respectively are those
described in theorem 1.1. However, suppose we allow3̂ to involve not only differentiation
and multiplication inz but also translation in z and call this moregeneral situation t-
bispectrality‡. It will be shown below that there are more KP solutions which are bispectral
in this sense. In particular, it will be shown that the KP solution associated toany subspace
C shares its eigenfunction with a ring of translational-differential operators in the spectral
parameter.

† Moreover, he demonstrated that up to conjugation or change of variables, the operatorsLp found in this way
are the only bispectral operators which commute with differential operators of relatively prime order, but this fact
will not play an important role in this paper.
‡ It should be noted that the term ‘bispectrality’ already applies to more general situations than simply differential
operators [8], but in the case of the KP hierarchy I believe only differential bispectrality has thus far been
considered.
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1.2. Notation

Using the shorthand notation∂ = ∂
∂x

any ordinary differential operator inx can be written
as

L =
N∑
i=0

fi(x)∂
i N ∈ N.

We say that a function of the form

f (x) =
n∑
i=1

pi(x)e
λix λi ∈ C, pi ∈ C[x]

is apolynomial-exponential functionand that the quotient of two such functions isrational-
exponential. This paper is especially concerned with the ring of differential operators
with rational-exponential coefficients and especially with the subring having polynomial-
exponential coefficients. Similarly, we will write∂z = ∂

∂z
but will need to consider only

differential operators inz with rational coefficients.
For anyλ ∈ C let Sλ = eλ∂z be the translational operator acting on functions ofz as

Sλ[f (z)] = f (z+ λ).
Then consider the ring of translational differential operatorsT generated by these
translational operators and ordinary differential operators inz. Any translational differential
operatorT̂ ∈ T can be written as

T̂ =
N∑
i=1

pi(z, ∂z)Sλi

wherepi are ordinary differential operators inz with rational coefficients andN ∈ N. Note
that the ring of ordinary differential operators inz with rational coefficients is simply the
subring ofT of all elements which can be written aspS0 for a differential operatorp.

2. Translational bispectrality of C[∂]

It has been frequently observed that the ringA = C[∂] of constant coefficient differential
operators inx is bispectral since it has the eigenfunction exz which it shares with the ring
of constant coefficient differential operators inz. Here, however, we will consider a more
general form of bispectrality for the ringA.

Let A′ ⊂ T be the ring of constant coefficicienttranslational differential operators.
Note that for any element̂T ∈ A′ of the form

T̂ =
N∑
i=1

pi(∂z)Sλi

one has simply that

T̂ [exz] =
( N∑
i=1

pi(x)e
λix

)
exz.

In particular, exz is an eigenfunction for the operator with an eigenvalue which is a
polynomial-exponential function ofx. Consequently, the ringsA andA′ are both bispectral,
sharing the common eigenfunction exz.

LetR be the ring of differential operators inx with polynomial-exponential coefficients
andR′ be the ring of translational-differential operators inz with rational coefficients. Note
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thatR is generated byA and the eigenvalues of the operators inA′ while R′ is generated
by A′ and the eigenvalues of the elements ofA. It then follows [1] (see also [13]) that the
mapb : R→ R′ defined by the relationship

L[exz] = b(L)[exz] ∀L ∈ R
is an anti-isomorphism of the two rings.

3. Translational bispectrality of KP solitons

Let us say that a finite-dimensional subspaceC ⊂ D is t-bispectral if there exists a
translational-differential operator̂3 ∈ T satisfying equation (2) for the corresponding KP
wavefunctionψC(x, z). By theorem 1.1 and the fact that the ring of rational coefficient
ordinary differential operators inz is contained inT, we know thatC is t-bispectral† if it
has a basis of point-supported distributions. Here we shall show that, in fact, all subspaces
C ⊂ D are t-bispectral.

An important object in much of the literature on integrable systems is the ‘tau function’.
The tau function of the KP solution associated toC can be written easily in terms of the
basis{ci}. In particular, define (cf [20])

τC(x) =Wr(c1(e
xz), c2(e

xz), . . . , cn(e
xz))

to be the Wronskian determinant of the functionsci(exz). Similarly, there is a Wronskian
formula for the coefficients of the operatorKC since its action on an arbitrary functionf (x)
is given as

KC(f (x)) = 1

τC(x)
Wr(c1(e

xz), c2(e
xz), . . . , cn(e

xz), f (x)). (3)

Then the coefficients of the differential operatorK̄C := τC(x)KC(x, ∂) are all polynomial
exponential functions.

Lemma 3.1. For any C ⊂ D there exists a constant coefficient operatorL0 ∈ A which
factors as

L0 = Q̄g ◦ 1

π(x)
◦ K̄C

whereQ̄g, K̄C ∈ R andπ(x) = g(x)τC(x) ∈ R is a polynomial-exponential function.

Proof. Let λi ∈ C (1 6 i 6 N ) be the support of the distributions inC andmi be the
highest derivative taken atλi by any element ofC. Then the polynomial

qC(z) := (z− λi)mi+1 (4)

has the property thatc ◦ qC ≡ 0 for any c ∈ C. Let L0 := qC(∂) and considerL0[c(exz)]
for any elementc ∈ C. SinceL0 is an operator inx alone, it commutes withc and we have

L0[c(exz)] = c(L0[exz]) = c(q(z)exz) = c ◦ q(exz) = 0.

So, by the definition ofKC , we see thatL0 annihilates the kernel ofKC and thus has a right
factor ofKC . This gives a factorization of the formL0 = Q ◦KC with Q having rational
exponential coefficients. Then, by choosing a polynomial exponential functiong(x) so that
Q̄g := Q ◦ g(x) ∈ R we find the desired factorization. �

Given this factorization, the t-bispectrality of allC’s now follows from theorem 4.2
in [1].

† . . .and also bispectral in the sense of [20].
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Theorem 3.1.For any subspaceC ⊂ D the corresponding KP wavefunctionψC(x, z)
satisfies the eigenvalue equation

3̂g[ψC(x, z)] = g(x)τC(x)ψC(x, z)
where3̂g ∈ T is the translational-differential operator defined by

3̂g := z−n ◦ b(K̄C) ◦ b(Q̄g) ◦ zn

qC(z)

with Q̄g defined as in lemma 3.1.

Proof. Formally introducing inverses [1], we determine from lemma 3.1 that

π(x) := g(x)τC(x) = K̄C ◦ L−1
0 ◦ Q̄

and hence (by applying the anti-involutionb to this equation)

b(π(x)) = b(Q̄) ◦ 1

qC(z)
◦ b(K̄C).

Then

3̂g[ψC(x, z)] = z−n ◦ b(K̄C) ◦ b(Q̄) ◦ zn

qC(z)

[
1

znτC(x)
K̄Ce

xz

]
= z−n

τC(x)
◦ b(K̄C) ◦ b(Q̄) ◦ 1

qC(z)
[K̄Ce

xz]

= z−n

τC(x)
◦ b(K̄C)[π(x)exz]

= z−nπ(x)
τC(x)

◦ K̄C [exz]

= π(x)ψC(x, z).
�

Note that according to theorem 3.1, each operator3̂g satisfies anintertwining
relationship

W ◦ b(π(x)) = 3̂g ◦W
with the constant coefficient operatorb(π(x)) whereW = z−n ◦ b(K̄C). As a result we find
that:

Corollary 3.1. The set of all such operatorŝ3g for a given subspaceC ⊂ D form a
commutative ring of translational-differential operators.

4. Examples

If we chooseC to be the two-dimensional space spanned byc1 = 1(1, 0) andc2 = 1(1, 1)
(a ‘two-particle’ Calogero–Moser-type solution) then

ψC(x, z) =
(

1+ 2+ x − (2x + x2)z

x2z2

)
exz.
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In this case the translational differential operators3̂ given by theorem 3.1 are simply
ordinary differential operators. For instance,

3̂ = ∂3
z +

3

z− z2
∂2
z −

6z2− 12z+ 3

z3(z− 1)2
∂ + 12z− 6

z2(z− 1)2

which satisfies3̂ψC(x, z) = x3ψC(x, z) (as we would expect from earlier results on
bispectrality).

However, if we had chosen insteadc1 = 1(0, 1)+1(0,−1) andc2 = 1(0, 2)+1(0, 0)
we would have had the case of a two-soliton solution with

ψC(x, z) =
(

1− 6+ (3z− 2)e2x + 2z− ze−2x

(ex + e−x)2z2

)
exz.

One finds from the procedure given in the theorem that

3̂ = z−2 ◦ ((20z+ 11z2− 8z3+ z4)S−3+ (60− 68z− z2+ 8z3+ z4)S5

+(−36+ 24z+ 16z2− 16z3+ 4z4)S−1

+(−44− 88z− 8z2+ 16z3+ 4z4)S3

(−12− 16z− 2z2+ 6z4)S1) ◦ z2

z4− 2z3− z2+ 2z

satisfies3̂[ψC(x, z)] = e−3x(1+ e2x)4ψC(x, z).

5. Conclusions

In addition to being a generalization of the results of [5, 20] on bispectral ordinary differential
operators, this paper may be seen as a generalization of [15] in which wavefunctions
of n-soliton solutions of the KdV equation are shown to satisfy difference equations in
the spectral parameter. The idea that KP solitons might be translationally bispectral was
proposed in [14].

As in [5, 20], equations (1) and (2) lead to the well known ‘ad’ relations associated
to bispectral pairs. That is, defining the ordinary differential operatorAm in x and the
translational-differential operator̂Am in z by

Am = admLp(π(x)) Âm = (−1)madmp(z)(3̂)

one finds thatAmψC(x, z) = ÂmψC(x, z). Similarly, if

Bm = admπ(x)(Lp) B̂m = (−1)madm
3̂
(p(z))

thenBmψC(x, z) = B̂mψC(x, z). Note that whenever the order ofBm−1 = N > 0 the order
of Bm cannot be greater thanN − 1. So, the familiar result thatBm ≡ 0 andB̂m ≡ 0 for
m > ordLp holds, which is clearly a strong restriction on the operator3̂. However, unlike
the case of bispectral ordinary differential operators, one cannot conclude thatAm ≡ 0 for
sufficiently largem since the order ofÂm may not be reduced by increasingm.

The bispectrality of the rational KP solutions [20] has been shown to have a dynamical
significance. In particular, it was shown that thebispectral involutionis the linearizing map
for the classical Calogero–Moser particle system [11, 20, 21]. Moreover, other bispectral KP
solutions have been found to have similar properties [12, 16]. This would seem to indicate
that it is likely that the bispectrality of KP solitons also has a dynamical significance, as
a map between the classical Ruijsenaars and Sutherland systems (cf [17]). In fact, such
a bispectral relationship between thequantumversions of these systems has been recently
found in [6]. The dynamical significance of these results will be considered in a separate
paper.
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