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Abstract. It is by now well known that the wavefunctions of rational solutions to the KP
hierarchy which can be achieved as limits of the pusoliton solutions satisfy an eigenvalue
equation for ordinary differential operators in the spectral parameter. This property is known as
‘bispectrality’ and has proved to be both interesting and useful. In this paper, it is shown that
all pure soliton solutions of the KP hierarchy (as well as their rational degenerations) satisfy
an eigenvalue equation for a non-local operator constructed by composing ordinary differential
operators in the spectral parameter withnslation operators in the spectral parameter, and
therefore have a form of bispectrality as well.

1. Introduction

1.1. The KP hierarchy and bispectrality

Let D be the vector space spanned o{eby the set
{A(n,A) | A»€C,n eN}
whose elements differentiate and evaluate functions of the variable

A, MIf@]:= f" 0.
The elements db are thudinitely supported distributionsn appropriate spaces of functions
in z. For lack of a better term, we shall continue to call them distributions even though
their main use in this paper will be their application to functions of two variables. (Such
distributions were called ‘conditions’ in [20] since a KP wavefunction was specified by
requiring that it be in their kernel.) Note that if € D and f(x, z) is sufficiently
differentiable inz on the support ot, then f(x) = [ f(x, )] is a function ofx alone.
Furthermore, note that one may ‘compose’ a distribution with a functianic. givenc € D
and f(z) (sufficiently differentiable on the support of then there exists @ :=co f € D
such that

c'(g(2)) = c(f(2)g(2)) ve.
The subspaces db can be used to generate solutions to the KP hierarchy [18] in the
following way. LetC c D be anr-dimensional subspace with basis, ..., c,}. Then,
if K = K¢ is the unique, monic ordinary differential operatorxrof ordern having the
functionsc; (e%%) in its kernel (see (3)) we defing. = K%K—l andy¢c = Z%Ke”. The
connection to integrable systems comes from the fact that adding dependeficent@
sequence of variableg (j = 1,2, ...) by letting C(z;) be the space with basis

{cr0€Xi? cr0eXti? | ¢, 0ell?y

0266-5611/98/061481+07$19.5@C) 1998 IOP Publishing Ltd 1481



1482 A Kasman

it follows that the ‘time dependent’ pseudo-differential operafoe= L(z;) satisfies the
equations of the KP hierarchy [2, 10, 11, 20]

0

— J
a[j£ - [('C )+7‘C]'

Thewavefunctiony ¢ (x, z) generates the corresponding subspace of the infinite-dimensional
Grassmannian Gr [18] which parametrizes KP solutions and thus it is not difficult to see
that this construction produces precisely those solutions associated to the sub-Grassmannian
Gr, C Gr [18, 20].

Moreover, the rindA¢c = {p € C[z]|c;op € C,1 < i < n}is necessarily non-trivial (i.e.
contains non-constant polynomials) and the operajpe= p(£) is anordinary differential
operator for everyp € Ac and satisfies

Lyye(x,2) = p(2)y¥e(x, 2). 1)

The subject of this paper is the existenceaditional eigenvalue equations satisfied by
Ye(x,2). In particular, we wish to consider the question of whether there exists an operator
A acting on functions of the variablesuch that

Ave(x, 2) = T () Pe(x, 2) )

wheren (x) is a non-constant function of. For example, the following theorem is due to
Wilson in [20].

Theorem 1.1.In addition to (1) the wavefunctioti¢(x, z) is also an eigenfunction for a
ring of ordinary differential operators in with eigenvalues depending polynomially -oiif
and only ifC has a basis of distributions each of which is supported only at one point.

In other words, for this special class of KP solutions for which the coefficients of
L are rational functions ofc, the wavefunctiony satisfies an additional eigenvalue
equation of the form (2) wherd is an ordinary differential operator inandx(x) a non-
constant polynomial incf. Together (1) and (2) are an examplehl$pectrality [3, 5, 8].
The bispectral property is already known to be connected to other questions of physical
significance such as the time-band limiting problem in tomography [7], Huygens’ principle
of wave propagation [4], quantum integrability [9, 19] and, especially in the case described
above, the self-duality of the Calogero—Moser particle system [11, 20, 21].

It is known that the only subspacésfor which the corresponding wavefunction satisfies
(1) and (2) withL, and A ordinary differential operators i andz respectively are those
described in theorem 1.1. However, suppose we allote involve not only differentiation
and multiplication inz but alsotranslation in z and call this moregeneral situation t-
bispectralityt. It will be shown below that there are more KP solutions which are bispectral
in this sense. In particular, it will be shown that the KP solution associatadysubspace
C shares its eigenfunction with a ring of translational-differential operators in the spectral
parameter.

t Moreover, he demonstrated that up to conjugation or change of variables, the opéfafotad in this way

are the only bispectral operators which commute with differential operators of relatively prime order, but this fact
will not play an important role in this paper.

i It should be noted that the term ‘bispectrality’ already applies to more general situations than simply differential
operators [8], but in the case of the KP hierarchy | believe only differential bispectrality has thus far been
considered.
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1.2. Notation

Using the shorthand notatich= % any ordinary differential operator in can be written
as

N
L=) fix)d N e N.
i=0
We say that a function of the form
f@ =Y pie* 2 eC peCll
i=1

is apolynomial-exponential functioand that the quotient of two such functiongagional-
exponential This paper is especially concerned with the ring of differential operators
with rational-exponential coefficients and especially with the subring having polynomial-
exponential coefficients. Similarly, we will writg, = da_z but will need to consider only
differential operators iz with rational coefficients.

For anyx € C let S, = €% be the translational operator acting on functionsg afs

Silf(@] = fz+ ).

Then consider the ring of translational differential operat@irsgenerated by these
translational operators and ordinary differential operatots iAny translational differential
operatorT € T can be written as

N
T = Zpi(z, 0:)S),
i—1

where p; are ordinary differential operators inwith rational coefficients an&/ € N. Note
that the ring of ordinary differential operators inwith rational coefficients is simply the
subring of T of all elements which can be written asS, for a differential operatop.

2. Translational bispectrality of C[9]

It has been frequently observed that the ridg= C[d] of constant coefficient differential
operators inx is bispectral since it has the eigenfunctioriewhich it shares with the ring
of constant coefficient differential operatorsan Here, however, we will consider a more
general form of bispectrality for the rind.

Let A" ¢ T be the ring of constant coefficiciemtanslational differential operators.
Note that for any elemerit € A’ of the form

N
T=3 p@)S,
i=1

one has simply that

N
f[e”] = <Zpi(x)@fx)€z.
i=1

In particular, & is an eigenfunction for the operator with an eigenvalue which is a
polynomial-exponential function of. Consequently, the ringd and.A" are both bispectral,
sharing the common eigenfunctiof¥ e

Let R be the ring of differential operators mwith polynomial-exponential coefficients
andR’ be the ring of translational-differential operatorsiwith rational coefficients. Note
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that R is generated byd and the eigenvalues of the operators4dhwhile R’ is generated
by A" and the eigenvalues of the elements4flt then follows [1] (see also [13]) that the
mapb : R — R’ defined by the relationship

L[e**] = b(L)[e"] VLeR
is an anti-isomorphism of the two rings.

3. Translational bispectrality of KP solitons

Let us say that a finite-dimensional subspatec D is t-bispectral if there exists a
translational-differential operatak € T satisfying equation (2) for the corresponding KP
wavefunctiony¢(x, z). By theorem 1.1 and the fact that the ring of rational coefficient
ordinary differential operators ip is contained inl, we know thatC is t-bispectraj if it
has a basis of point-supported distributions. Here we shall show that, in fact, all subspaces
C c D are t-bispectral.

An important object in much of the literature on integrable systems is the ‘tau function’.
The tau function of the KP solution associated@acan be written easily in terms of the
basis{c;}. In particular, define (cf [20])

e (x) = Wr(c1(€), c2(€), ..., ¢, (7))
to be the Wronskian determinant of the functian&e*?). Similarly, there is a Wronskian

formula for the coefficients of the operat&i- since its action on an arbitrary functigi(x)
is given as
Ke(f(x) = iWr(cl(e“), c2(€%), ..., cu(€7), f(x)). (3)
Tc(x)
Then the coefficients of the differential operaiy := ¢ (x)Kc(x, d) are all polynomial
exponential functions.

Lemma 3.1. For any C C D there exists a constant coefficient operafay € A which
factors as

1
w(x)
whereQ,, Kc € R andr(x) = g(x)zc(x) € R is a polynomial-exponential function.

L():ng OIEC

Proof. Let 4; € C (1 < i < N) be the support of the distributions i andm; be the
highest derivative taken at by any element of”. Then the polynomial
qe(2) = (z = 1"+ (4)
has the property thato gc = 0 for anyc € C. Let Lo := ¢g¢(d) and consideto[c(e%)]
for any element € C. SinceLg is an operator inx alone, it commutes with and we have
Lo[c(€%)] = c(Lo[e™]) = c(q(2)€") = cogq(e™) = 0.
So, by the definition oK, we see thaLy annihilates the kernel af - and thus has a right
factor of K-. This gives a factorization of the forthp = Q o K¢ with Q having rational

exponential coefficients. Then, by choosing a polynomial exponential fungtionso that
0, '= Qo g(x) € R we find the desired factorization. O

Given this factorization, the t-bispectrality of all's now follows from theorem 4.2
in [1].

1 ...and also bispectral in the sense of [20].
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Theorem 3.1.For any subspace” < D the corresponding KP wavefunctiofic (x, z)
satisfies the eigenvalue equation

Ale(x, 2)] = g0 () Ye(x, 2)

where[\g e T is the translational-differential operator defined by

Ag =2 0b(Ke)ob(Qy) o ﬁ

with Q, defined as in lemma 3.1.

Proof. Formally introducing inverses [1], we determine from lemma 3.1 that
m(x) = g(x)tc(x) = KcoLyto Q
and hence (by applying the anti-involutiénto this equation)

b(r(x)) = b(Q) o

! b(Kc)
qc(2) <

Then

A BN K o ) o ' K ~e*?
At =" e bRe ob(@ 0 = |~ Reer|
" - - 1

= b b
rc(x)O (Keye (Q)Oqc(z)

—n

[Kce™]

oz
EZIE))
_"n(x)
e

=7 (x)Yc(x, 2).

o b(Ke)[m(x)e*]

o Kcle*]

(I
Note that according to theorem 3.1, each opera&g,r satisfies anintertwining
relationship
Wob(m(x)) =Ag oW

with the constant coefficient operatbgr (x)) whereW = z " o b(K¢). As a result we find
that:

Corollary 3.1. The set of all such operatorég for a given subspac€ c D form a
commutative ring of translational-differential operators.

4. Examples

If we chooseC to be the two-dimensional space spannedpy A(1,0) andcy = A(L, 1)
(a ‘two-particle’ Calogero—Moser-type solution) then

2+x — (X +x2z\ .

Yelx,z) = <1+ ) e’

Xz
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In this case the translational differential operatdrsgiven by theorem 3.1 are simply
ordinary differential operators. For instance,
. 3 672 — 127 + 3 12 - 6
A=0d+ 92 —
¢z Bz —17? 22(z — 1)?
which satisfiesf\wc (x,z) = x3Ye(x,z) (as we would expect from earlier results on
bispectrality).
However, if we had chosen instead= A (0, 1) + A(0, —1) andco, = A(O, 2)+A(0, 0)
we would have had the case of a two-soliton solution with
64+ (37 —2)&” +27 —z&¥
o) =|1- e,
Ve(x, 2) ( & 1 o)z
One finds from the procedure given in the theorem that
A=720(20; 41122 — 8° + z%S 3+ (60— 68 — z° + 8% + %) S5
+(—36+ 24z 4 1672 — 16:° + 42484
+(—44— 887 — 8% + 162° + 4z%) S5

ZZ

4-278-72+2¢
satisfiesA[vc(x, 2)] = €3 (1 + e)*yc(x, 2).

(—12—16; — 222+ 6z%)S1) o -

5. Conclusions

In addition to being a generalization of the results of [5, 20] on bispectral ordinary differential
operators, this paper may be seen as a generalization of [15] in which wavefunctions
of n-soliton solutions of the KdV equation are shown to satisfy difference equations in
the spectral parameter. The idea that KP solitons might be translationally bispectral was
proposed in [14].

As in [5, 20], equations (1) and (2) lead to the well known ‘ad’ relations associated
to bispectral pairs. That is, defining the ordinary differential operatgrin x and the
translational-differential operatot,, in z by

Ap=ad! (x(x) A, =(=D"ad,(A)
one finds thatd,, V¢ (x, z) = A, ¥c(x, z). Similarly, if
By =ad!,,(L,)  Bn=(-D"ad!(p(z))

then B, Yc(x,z) = Emwc(x, z). Note that whenever the order 8f,_1 = N > 0 the order
of B,, cannot be greater thaN — 1. So, the familiar result thaB,, = 0 and B,, = 0 for
m > ordL, holds, which is clearly a strong restriction on the operatorHowever, unlike
the case of bispectral ordinary differential operators, one cannot concluda,thatO for
sufficiently largem since the order ofi,, may not be reduced by increasing

The bispectrality of the rational KP solutions [20] has been shown to have a dynamical
significance. In particular, it was shown that thispectral involutionis the linearizing map
for the classical Calogero—Moser particle system [11, 20, 21]. Moreover, other bispectral KP
solutions have been found to have similar properties [12, 16]. This would seem to indicate
that it is likely that the bispectrality of KP solitons also has a dynamical significance, as
a map between the classical Ruijsenaars and Sutherland systems (cf [17]). In fact, such
a bispectral relationship between theantumversions of these systems has been recently
found in [6]. The dynamical significance of these results will be considered in a separate
paper.
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