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Abstract: There is no deep mathematics here, but
a student project collected and collated difficult to find
information on this topic. Moreover, we discovered a few
new twists. All together, this can help us interpret the
“interaction” of KdV solitons.



The KdV Equation

ut − 3

2
uux − 1

4
uxxx = 0

Originally derived over 100 years ago to model surface waves in a canal.

Category in the Mathematics Classification Scheme (MCS2000) called “KdV-like
equations” (35Q53) and frequently paired with the adjective “ubiquitous”

Completely Integrable: we can write exact solutions.

It has “hump-like” travelling wave solution:

u1(x, t)=u1(x, t; k, ξ) = 2k2sech2(η(x, t; k, ξ))

η(x, t; k, ξ)=kx + k3t + ξ

There are also n-soliton solutions showing nonlinear superposition of a
collection of these “humps”:



KdV 2-Soliton
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u2(x, t) = 2∂2
x log (τ ) τ = e−η1−η2 + eη1−η2 + eη2−η1 + ε2eη1+η2

ε =
k2 − k1

k1 + k2
ηi = η(x, t; ki, ξi) = kix + k3

i t + ξi

Looks similar to a sum of two travelling waves, but it is not! Note:

Height at t = 0 not sum of heights. Trajectories are “bent” at time of collision.

Philosophical Question: Does the tall one pass through the small one, or
does the trailing one pass its momentum to the first?



A Decomposition (BKY 2006): u2 = f1 + f2

Consider f1 and f2 such that u2(x, t) = f1(x, t)+f2(x, t). Clearly, there are
many ways to do this, but some are more interesting than others. The following
is original to us

f1(x, t) =
8ε2((k2 + k1)

2 + k2
2e

2η1 + k2
1e

2η2)

τ 2

f2(x, t) =
8((k2 − k1)

2 + k2
2e

−2η1 + k2
1e

−2η2)

τ 2
.
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= f2(x, t)

Properties: order preserving, positive
formula very nice



Yoneyama’s Speed Preserving Decomposition (1984)

f1 = 2k1(g(η1, η2))xsech
2[g(η1, η2)] f2 = 2k2(g(η2, η1))xsech

2[g(η2, η1)]

g(ηi, ηj) = ηi +
1

2
ln

(
1 + ε2 exp(2ηj)

1 + exp(2ηj)

)
.

Oldest published decomposition, argued that solitons are attractive. Note that f1
has a zero near peak of f2.
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Key:
= f1(x, t)

= f2(x, t)

Properties: speed preserving,
non-negative (f1 = 0)
formula pretty nice
further developed by Moloney-Hodnett,
Campbell-Parks, Fuch



Miller-Christiansen: Order and Mass
Preserving

Inspired by Bowtell-Stuart’s singularity analysis, present decomposition satisfying:

(fi)t − 3

4
(u2(fi)x + (u2)xfi) − 1

4
(fi)xxx = 0.

f1 =4ε2/τ 2
(
k1(k1 + k2)

2k1 − k2e
−2η2 + 2(k1 + k2)

2 + 2k2
2e

2η1 + k1(k1 + k2)e
2η2

)
f2 =4/τ 2

(
k1(k1 + k2)e

−2η2 + 2k2
2e

−2η1 + 2(k1 − k2)
2 + ε2k1(k1 − k2)e

2η2
)
.
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Properties: order and mass preserving, ±,
components satisfy coupled PDEs
formulas given here for first time!



Nguyen’s “Ghost” Solitons

“Ghosts” created at collision travel ahead of solitons. Creates decomposition based
on eigenvalue factorization of τ :

f1 =2∂2
x log

(
e2η1 + e2η2 + 2ε2e2(η1+η2) −√

γ
)

f2 =2∂2
x log

(
e2η1 + e2η2 + 2ε2e2(η1+η2) +

√
γ
)

γ =e4η1 + e4η2 − 2(k2
1 − 6k1k2 + k2

2)

(k1 + k2)2
e2(η1+η2).
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Key:
= f1(x, t)

= f2(x, t)

Properties: order preserving, ±
formula not too nice or natural
not spacetime symmetric!



Vain Remarks

Note that only our decomposition has all three of these “soliton like” properties:

• All of its elements are all non-negative, taking only strictly positive values
when the parameters and variables are real.

• The set itself is closed under the involution x → −x and t → −t, which
is to say that if one is watching a KdV soliton interaction or the same thing
shown in a mirror and run backwards in time.

• All of its elements take the form of quotients of finite linear combinations of
the form exp(ax + bt).

Next: Decompositions into Three or More Parts

u2(x, t) = f1(x, t) + f2(x, t) + f3(x, t) + · · ·



Why consider n > 2?

Argument #1: The timing of
asymptote intersections suggests
“transfer boson”:
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Argument #2: Lax’s original
paper discusses the number of local
maxima in 2-soliton solution as
function of the speeds k1 and k2.
All have 2 local maxima for almost
all times but:

• If k1/k2 is large: there is a
moment with just one maximum.

• If k1/k2 is small: two local
maxima at all times.

• In between: there is a moment
when there are three maxima.



Bryan and Stuart’s 3-part decomposition

Their decomposition also starts with eigenvalues of same matrix as Nguyen, so γ
is the same:

fi = 2
(µ′

i)
2

µi(1 + µi)2
i = 1, 2 f3 =

2∑
i=1

(2∂2
x ln(µi))

µi

1 + µi

where

µi =
(k1 + k2)e

−2η1−2η2

2(k2 − k1)2
(
e2η1 + e2η2 + (−1)i

√
γ
)
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Our decomposition with “exchange soliton”

f1(x, t) =
8ε2(k2

2e
2η1 + k2

1e
2η2)

τ 2
f2(x, t) =

8(k2
2e

−2η1 + k2
1e

−2η2)

τ 2

f3(x, t) =
16(k2 − k1)

2

τ 2
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Here, f3 vanishes for |t| → ∞ and has a unique local max ∀t located at

x = − 1

k2
(k3

2t + ξ2 + log
√

ε).



Conclusions and Outlook

Nguyen even has a decomposition of u2 with four parts!

Question of how to identify the solitons before and after the interactions is not
well posed mathematical problem: one should not be expecting a definitive
answer.

Other ways: Several authors have attempted to provide motivation for the order
preserving interpretation by reference to moving “point particles” associated to
singularities of solutions of the KdV equation.

Making new out of old: If {fi} and {gi} are decompositions of u2 then so is
{F (x, t)fi + (1 − F (x, t))gi} for an arbitrary function F . (This dramatically
demonstrates the extent to which the decompositions fail to be unique.)

Future goals: Decomposition of n-soliton; Decomposition of KP soliton, find
explicit connection between “exchange soliton” and process of “bosonization”.
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