On Decompositions of KdV 2-Solitons

Alex Kasman
College of Charleston

Joint work with Nick Benes and Kevin Young
Journal of Nonlinear Science, Volume 16 Number 2 (2006) pages 179-200

Abstract: There is no deep mathematics here, but a student project collected and collated difficult to find information on this topic. Moreover, we discovered a few new twists. All together, this can help us interpret the "interaction" of KdV solitons.

The KdV Equation

$$
u_{t}-\frac{3}{2} u u_{x}-\frac{1}{4} u_{x x x}=0
$$

> Originally derived over 100 years ago to model surface waves in a canal.
> Category in the Mathematics Classification Scheme (MCS2000) called "KdV-like equations" (35Q53) and frequently paired with the adjective "ubiquitous"
> Completely Integrable: we can write exact solutions.
> It has "hump-like" travelling wave solution:

$$
\begin{aligned}
u_{1}(x, t) & =u_{1}(x, t ; k, \xi)=2 k^{2} \operatorname{sech}^{2}(\eta(x, t ; k, \xi)) \\
\eta(x, t ; k, \xi) & =k x+k^{3} t+\xi
\end{aligned}
$$

> There are also n-soliton solutions showing nonlinear superposition of a collection of these "humps":

KdV 2-Soliton

$$
\begin{gathered}
u_{2}(x, t)=2 \partial_{x}^{2} \log (\tau) \quad \tau=e^{-\eta_{1}-\eta_{2}}+e^{\eta_{1}-\eta_{2}}+e^{\eta_{2}-\eta_{1}}+\epsilon^{2} e^{\eta_{1}+\eta_{2}} \\
\epsilon=\frac{k_{2}-k_{1}}{k_{1}+k_{2}} \quad \eta_{i}=\eta\left(x, t ; k_{i}, \xi_{i}\right)=k_{i} x+k_{i}^{3} t+\xi_{i}
\end{gathered}
$$

Looks similar to a sum of two travelling waves, but it is not! Note:
\Rightarrow Height at $t=0$ not sum of heights. Trajectories are "bent" at time of collision.
Philosophical Question: Does the tall one pass through the small one, or does the trailing one pass its momentum to the first?

A Decomposition (BKY 2006): $u_{2}=f_{1}+f_{2}$

Consider f_{1} and f_{2} such that $u_{2}(x, t)=f_{1}(x, t)+f_{2}(x, t)$. Clearly, there are many ways to do this, but some are more interesting than others. The following is original to us

$$
\begin{aligned}
f_{1}(x, t) & =\frac{8 \epsilon^{2}\left(\left(k_{2}+k_{1}\right)^{2}+k_{2}^{2} e^{2 \eta_{1}}+k_{1}^{2} e^{2 \eta_{2}}\right)}{\tau^{2}} \\
& f_{2}(x, t)=\frac{8\left(\left(k_{2}-k_{1}\right)^{2}+k_{2}^{2} e^{-2 \eta_{1}}+k_{1}^{2} e^{-2 \eta_{2}}\right)}{\tau^{2}}
\end{aligned}
$$

Yoneyama's Speed Preserving Decomposition (1984)

$$
\begin{gathered}
f_{1}=2 k_{1}\left(g\left(\eta_{1}, \eta_{2}\right)\right)_{x} \operatorname{sech}^{2}\left[g\left(\eta_{1}, \eta_{2}\right)\right] \quad f_{2}=2 k_{2}\left(g\left(\eta_{2}, \eta_{1}\right)\right)_{x} \operatorname{sech}^{2}\left[g\left(\eta_{2}, \eta_{1}\right)\right] \\
g\left(\eta_{i}, \eta_{j}\right)=\eta_{i}+\frac{1}{2} \ln \left(\frac{1+\epsilon^{2} \exp \left(2 \eta_{j}\right)}{1+\exp \left(2 \eta_{j}\right)}\right)
\end{gathered}
$$

Oldest published decomposition, argued that solitons are attractive. Note that f_{1} has a zero near peak of f_{2}.

$$
t=-2
$$

Key:

$$
\begin{aligned}
& \underline{\text { ey: }}=f_{1}(x, t) \\
& =f_{2}(x, t)
\end{aligned}
$$

Properties: speed preserving, non-negative $\left(f_{1}=0\right)$ formula pretty nice further developed by Moloney-Hodnett, Campbell-Parks, Fuch

Miller-Christiansen: Order and Mass Preserving

Inspired by Bowtell-Stuart's singularity analysis, present decomposition satisfying:

$$
\left(f_{i}\right)_{t}-\frac{3}{4}\left(u_{2}\left(f_{i}\right)_{x}+\left(u_{2}\right)_{x} f_{i}\right)-\frac{1}{4}\left(f_{i}\right)_{x x x}=0
$$

$$
f_{1}=4 \epsilon^{2} / \tau^{2}\left(k_{1}\left(k_{1}+k_{2}\right)^{2} k_{1}-k_{2} e^{-2 \eta_{2}}+2\left(k_{1}+k_{2}\right)^{2}+2 k_{2}^{2} e^{2 \eta_{1}}+k_{1}\left(k_{1}+k_{2}\right) e^{2 \eta_{2}}\right)
$$

$$
f_{2}=4 / \tau^{2}\left(k_{1}\left(k_{1}+k_{2}\right) e^{-2 \eta_{2}}+2 k_{2}^{2} e^{-2 \eta_{1}}+2\left(k_{1}-k_{2}\right)^{2}+\epsilon^{2} k_{1}\left(k_{1}-k_{2}\right) e^{2 \eta_{2}}\right) .
$$

$$
t=-2
$$

$$
t=-1
$$

Key:

$$
\begin{aligned}
& =f_{1}(x, t) \\
& =f_{2}(x, t)
\end{aligned}
$$

Properties: order and mass preserving, \pm, components satisfy coupled PDEs formulas given here for first time!

Nguyen's "Ghost" Solitons

"Ghosts" created at collision travel ahead of solitons. Creates decomposition based on eigenvalue factorization of τ :

$$
\begin{aligned}
& f_{1}=2 \partial_{x}^{2} \log \left(e^{2 \eta_{1}}+e^{2 \eta_{2}}+2 \epsilon^{2} e^{2\left(\eta_{1}+\eta_{2}\right)}-\sqrt{\gamma}\right) \\
& f_{2}=2 \partial_{x}^{2} \log \left(e^{2 \eta_{1}}+e^{2 \eta_{2}}+2 \epsilon^{2} e^{2\left(\eta_{1}+\eta_{2}\right)}+\sqrt{\gamma}\right) \\
& \gamma=e^{4 \eta_{1}}+e^{4 \eta_{2}}-\frac{2\left(k_{1}^{2}-6 k_{1} k_{2}+k_{2}^{2}\right)}{\left(k_{1}+k_{2}\right)^{2}} e^{2\left(\eta_{1}+\eta_{2}\right)} .
\end{aligned}
$$

Key:

$$
\begin{aligned}
& \square=f_{1}(x, t) \\
& =f_{2}(x, t)
\end{aligned}
$$

Properties: order preserving, \pm formula not too nice or natural not spacetime symmetric!

Vain Remarks

Note that only our decomposition has all three of these "soliton like" properties:

- All of its elements are all non-negative, taking only strictly positive values when the parameters and variables are real.
- The set itself is closed under the involution $x \rightarrow-x$ and $t \rightarrow-t$, which is to say that if one is watching a KdV soliton interaction or the same thing shown in a mirror and run backwards in time.
- All of its elements take the form of quotients of finite linear combinations of the form $\exp (a x+b t)$.

Next: Decompositions into Three or More Parts

$$
u_{2}(x, t)=f_{1}(x, t)+f_{2}(x, t)+f_{3}(x, t)+\cdots
$$

Argument \#1: The timing of asymptote intersections suggests "transfer boson":

Argument \#2: Lax's original paper discusses the number of local maxima in 2 -soliton solution as function of the speeds k_{1} and k_{2}. All have 2 local maxima for almost all times but:

- If k_{1} / k_{2} is large: there is a moment with just one maximum.
- If k_{1} / k_{2} is small: two local maxima at all times.
- In between: there is a moment when there are three maxima.

Bryan and Stuart's 3-part decomposition

Their decomposition also starts with eigenvalues of same matrix as Nguyen, so γ is the same:

$$
f_{i}=2 \frac{\left(\mu_{i}^{\prime}\right)^{2}}{\mu_{i}\left(1+\mu_{i}\right)^{2}} \quad i=1,2 \quad f_{3}=\sum_{i=1}^{2}\left(2 \partial_{x}^{2} \ln \left(\mu_{i}\right)\right) \frac{\mu_{i}}{1+\mu_{i}}
$$

where

$$
\mu_{i}=\frac{\left(k_{1}+k_{2}\right) e^{-2 \eta_{1}-2 \eta_{2}}}{2\left(k_{2}-k_{1}\right)^{2}}\left(e^{2 \eta_{1}}+e^{2 \eta_{2}}+(-1)^{i} \sqrt{\gamma}\right)
$$

$$
t=-1 .
$$

$$
t=-0.5
$$

$t=1$.

Key:

$$
\begin{aligned}
\overline{e y:} & =f_{1} \\
\square & =f_{2} \\
= & =f_{3}
\end{aligned}
$$

Our decomposition with "exchange soliton"

$$
\begin{gathered}
f_{1}(x, t)=\frac{8 \epsilon^{2}\left(k_{2}^{2} e^{2 \eta_{1}}+k_{1}^{2} e^{2 \eta_{2}}\right)}{\tau^{2}} \quad f_{2}(x, t)=\frac{8\left(k_{2}^{2} e^{-2 \eta_{1}}+k_{1}^{2} e^{-2 \eta_{2}}\right)}{\tau^{2}} \\
f_{3}(x, t)=\frac{16\left(k_{2}-k_{1}\right)^{2}}{\tau^{2}}
\end{gathered}
$$

$t=0.5$

Key:

Here, f_{3} vanishes for $|t| \rightarrow \infty$ and has a unique local max $\forall t$ located at $x=-\frac{1}{k_{2}}\left(k_{2}^{3} t+\xi_{2}+\log \sqrt{\epsilon}\right)$.

Conclusions and Outlook

> Nguyen even has a decomposition of u_{2} with four parts!
> Question of how to identify the solitons before and after the interactions is not well posed mathematical problem: one should not be expecting a definitive answer.
> Other ways: Several authors have attempted to provide motivation for the order preserving interpretation by reference to moving "point particles" associated to singularities of solutions of the KdV equation.
> Making new out of old: If $\left\{f_{i}\right\}$ and $\left\{g_{i}\right\}$ are decompositions of u_{2} then so is $\left\{F(x, t) f_{i}+(1-F(x, t)) g_{i}\right\}$ for an arbitrary function F. (This dramatically demonstrates the extent to which the decompositions fail to be unique.)
> Future goals: Decomposition of n-soliton; Decomposition of KP soliton, find explicit connection between "exchange soliton" and process of "bosonization".

References

G. Bowtell, A.E.G. Stuart: A Particle Representation for Kortweg-de Vries Solitons, J. Math. Phys. 24 (1983), 969-981.
A.C. Bryan, A.E.G. Stuart: On the Dynamics of Soliton Interactions for the Kortweg-de Vries Equation, Chaos, Solitons \& Fractals 2 (1992), 487-491.
F. Campbell, J. Parkes: The Internal Structure of the Two-Soliton Solution to Nonlinear Evolution Equations of a Certain Class, SOLPHYS 1997, Technical University of Denmark.
P.F. Hodnett, T.P. Moloney: On the Structure During Interaction of the Two-Soliton Solution of the Kortweg-de Vries Equation, SIAM J. Appl. Math. 49 (1989), 1174-1187.
P.D. Lax: Integrals of Nonlinear Equations of Evolution and Solitary Waves, Communs. Pure Appl. Math. 21 (1968), 467-490.
R.J. LeVeque: On the Interaction of Nearly Equal Solitons in the KdV Equation, SIAM J. Appl. Math. 47 (1987), 254-262.
P.D. Miller, P.L. Christiansen: A Coupled Kortweg-de Vries System and Mass Exchanges Among Solitons, Physica Scripta 61 (2000), 518-525. .P. Moloney,
P.F. Hodnett: Soliton interactions (for the Korteweg-de Vries equation): a new perspective, J. Phys. A 19 (1986), L1129-L1135.
H.D. Nguyen: Decay of KdV Solitons, SIAM J. Appl. Math. 63 (2003), 874-888.
H.D. Nguyen: Soliton Collisions and Ghost Particle Radiation, Journal of Nonlinear Mathematical Physics 11 (2004) 180-198
T. Yoneyama: The Kortweg-de Vries Two-Soliton Solution as Interacting Two Single Solitons, Prog. Theor. Phys. 71 (1984), 843-846.

Journal: N. Benes, A. Kasman and K. Young Journal of Nonlinear Science, Volume 16 Number 2 (2006) pages 179-200

Preprint: https://aps.arxiv.org/abs/nlin.PS/0602036
Animation: https://math.cofc.edu/kasman/SOLTITONPICS/
These Slides: https://math.cofc.edu/kasman/solitondecomptalk.pdf

