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Abstract. The iterated Darboux transformations of an ordinary
differential operator are constructively parametrized by an infinite
dimensional grassmannian of finitely supported distributions. In
the case that the operator depends on time parameters so that it
is a solution to the n-KdV hierarchy, it is shown that the trans-
formation produces a solution of the KP hierarchy. The standard
definitions of the theory of τ -functions are applied to this grass-
mannian and it is shown that these new τ -functions are quotients
of KP τ -functions. The application of this procedure for the con-
struction of “higher rank” KP solutions is discussed.

1. Introduction

The Darboux transformation is a technique for producing a new dif-
ferential operator and eigenfunction from a known operator eigenfunc-
tion pair. Essentially, the technique involves factoring the operator and
exchanging its factors. Equivalently, the transformation can be seen as
a conjugation of the operator by another differential operator. Orig-
inally used by Darboux in the context of the stationary Schrödinger
equation, this technique has become an important tool in the study of
integrable non-linear evolution, or soliton, equations.

Another technique frequently used in the study of soliton equations
is the association, through the work of Burchnall and Chaundy [4], of
algebro-geometric objects including an algebraic (spectral) curve and
a vector bundle to commutative rings of ordinary differential operators
[11]. In this construction, the common eigenfunctions of the elements
of the ring are viewed as a vector bundle over the algebraic curve of
common eignvalues of the ring. The rank of the bundle is the greatest
common divisor of the orders of the elements of the ring, and is referred
to as the rank of the ring. Then, the ring behaves asymptotically near
the point at infinity like the polynomial ring C[L0] for some differential
operator L0 whose order is the rank of the ring [20].

The present paper investigates an infinite dimensional grassmannian
Gr(Dn) whose points determine iterated Darboux transformations of
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the ring C[L0] into a commutative ring of ordinary differential operators
with vacuum L0 for arbitrary choices of L0 with order n. Specifically,
given an ordinary differential operator L0 of order n, the choice of a
point C ∈ Gr(Dn) determines a subring AC ⊂ C[z] and an ordinary
differential operator KC such that

KCp(L0) = QpKC

for any p ∈ AC and some ordinary differential operator Qp. Thus, Qp

is achieved as a Darboux transformation of p(L0) and

RC = {Qp|p ∈ AC}
is a commutative ring with rank n and vacuum operator L0.

In the case that the vacuum operator L0 is chosen to satisfy the
equations of the n-KdV hierarchy

∂

∂ti
L0 = [(L

i/n
0 )+, L0]

then pseudo-differential operator

LC = KCL
1/n
0 K−1

C

is seen to be a solution of the KP hierarchy. In this way, the results
described above can be seen as an investigation of Darboux transfor-
mations taking solutions of n-KdV to solutions of KP and therefore
as a generalization of the results of Latham-Previato [16] on Darboux
transformations from solutions of the KdV equation to the KP equa-
tion. The methods used are largely based on those developed in [25]
for the case n = 1.

2. Distributions

Let D denote the set of finitely supported distributions. That is,
elements of D are finite linear combinations of functionals of the form

δλ ◦ ∂i
z λ ∈ C, i ∈ N

acting on functions in the variable z (sufficiently differentiable at z = λ)
by

δλ ◦ ∂i
z (f(z)) = f (i)(λ).

Then, elements of D
n can be interpreted as linear functionals on z

dependent n-vectors:

c(f1, . . . , fn) =
n∑

i=1

ci(fi) c ∈ D
n.

Subspaces of D were used to construct explicit soliton solutions to
the KP hierarchy in [22] and then to construct rational solutions in
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[25]. The theory to be developed below is a generalization of these
techniques using subspaces of Dn.

For any subspace V ⊂ D
n and natural number N < dimV one may

consider the grassmannian

(1) GrN(V) := {C ⊂ V| dimW = N}
of N dimensional subspaces of V. In the present paper, we will only
be interested in the case N ≡ 0 mod n and so this relationship will be
assumed in all that follows. It will further be convenient to consider
the set

(2) G̃r(Dn) := {C ⊂ D
n| dimC <∞ dimC ≡ 0 mod n}

into which any GrN(V) can be embedded by inclusion. (In Section 4,
this set will be replaced by the infinite dimensional grassmannianGr(Dn)
which is its quotient by an equivalence relation.)

Note that the ring C[z] acts on Dn on the right. In particular, we
define the composition c ◦ v for c ∈ Dn and v(z) ∈ C[z] by the formula

(3) c ◦ v (p1(z), . . . , pn(z)) := c (v(z)p1(z), . . . , v(z)pn(z)) .

Definition 1. For C ∈ G̃r(Dn), let

(4) AC := {p(z) ∈ C[z]|c ◦ p ∈ C}
denote the stabilizer of C in C[z].

Definition 2. Given c ∈ Dn and λ ∈ C in the support of c, denote
by µc(λ) the maximum non-negative integer m ∈ N such that some
element of c written in the standard basis of D contains the expression
δλ ◦ ∂m−1

z with non-zero coefficient. Note that µc(λ) > 0 for all λ in
the support of c. For convenience, we define µc(λ) = 0 if λ is not in
the support of c. Similarly, for a subspace C ⊂ Dn, let µC(λ) be the
maximum over all c ∈ C of µc(λ). Then, let σC(z) be the polynomial

(5) σC(z) :=
∏

λ∈C

(z − λ)µC(λ).

Then, σC(z) is a polynomial which is has a root at each λ of multi-
plicity sufficiently high that the following is true.

Lemma 1. For any c ∈ C, the distribution c◦σC is the zero distribution

(6) c ◦ σC ≡ 0.

Note: Thus, the ideal σC(z)C[z] is always contained in the ring AC

for all C ∈ G̃r(Dn).

The subspaces C ∈ G̃r(Dn) will be used below to perform Darboux
transformations on arbitrary ordinary differential operators of order n.
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3. Darboux Transformations

Let L0 be a non-constant ordinary differential operator of order n.
Without loss of generality, we suppose that L0 is normalized to be in
the form

(7) L0 = ∂n + un−2(x)∂
n−2 + · · · + u0(x)

using the automorphisms of the ring of ordinary differential operators.
Let F be the kernel of the operator L0−z for varying z. In particular,

f(x, z) ∈ F satisfies the eigenvalue equation

(8) L0f(x, z) = zf(x, z).

The space F has a unique basis of functions (viewed here as a vector)
~f := (f1(x, z), . . . , fn(x, z)) such that the Wronskian matrix Wr(~f) is

the identity matrix when evaluated at x = 0. The functions ~f are
analytic in the spectral parameter z. Then any point in C ∈ GrN (Dn)
specifies a Darboux transformation of the ring C[L0] as follows.

Lemma 2. If c ∈ DN is not the zero distribution, then c(~f) 6≡ 0.

Proof. Suppose c ∈ Dn satisfies c(~f) = 0. Then we must show that
c ≡ 0 ∈ Dn. Suppose that c is non-trivial and denote by λi (1 ≤ i ≤
m) the support of the distribution c and by µi the highest derivative
evaluated at λi which appears in c. Let σ(z) denote the polynomial

(9) σ(z) = (z − λ1)
µ1

m∏

i=2

(z − λi)
µi+1.

This polynomial is chosen specifically so that c ◦ σ is a distribution
with support only at λ1 which involves no derivatives higher than the
0th derivative. In fact, since

0 = σ(L0)c(~f) = c(σ(L0)~f)(10)

= c(σ(z)~f ) = c ◦ σ(~f)(11)

we end up with an equation of the form

(12)

n∑

j=1

αjfj(x, λ1) = 0

where αj is non-zero if and only if d(µ1, j, λ1) appears in a minimal
representation of c. However, the functions fj(x, λ1) are an independent
set of functions spanning the kernel of L0 −λ1. In particular, all of the
αj must be zero, which contradicts the assumption that c involves the
evaluation of some µ1

st derivative at λ1. �
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Definition 3. For any C ∈ GrN(Dn), it follows from Lemma 2 that the

space spanned by the functions c(~f) for all c ∈ C is an N dimensional
space. Let the operator K = KC be the unique monic operator of order

N such that the functions c(~f) are in the kernel of K. Picking a basis
C = 〈ci〉, one may compute K using the fact that

(13) Ku(x) =
Wr(c1(~f), . . . , cN(~f), u(x))

Wr(c1(~f), . . . , cN(~f))
.

Lemma 3. Let Q be any ordinary differential operator such that kerK ⊂
kerQ, then Q = LK for some ordinary differential operator L.

Proof. We may always write Q = LK + L′ for some operator L′ of
order less than N . Then, since kerLK clearly contains the kernel of
K, kerL′ must also contain kerK. However, the dimension of the
kernel of a non-trivial operator is no greater than its order, and thus
L′ = 0. �

This now allows us to represent the ring AC as a commutative algebra
of ordinary differential operators through conjugation by K.

Claim 1. For any p ∈ AC, the operator

(14) Lp := Kp(L0)K
−1

is an ordinary differential operator and thus the ring

(15) RC := {Lp|p ∈ AC}

is a commutative ring of ordinary differential operators of rank n.

Proof. First note that for c ∈ C, Kp(L0) satisfies

Kp(L0)c(~f) = Kc(p(L0)~f)(16)

= Kc(p(z)~f)(17)

= Kc ◦ p(~f).(18)

But then, since c ◦ p = c′ ∈ C and c′(~f) ∈ kerK we have

(19) Kp(L0)c(~f) = 0.

By Lemma 3, this implies that Kp(L0) = LK for some operator L and
then Lp = L.

That the rank of RC is n follows from the fact that σC(z)C[z] ⊂ AC

and thus AC contains a polynomial of every arbitrarily high degree. �
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The transformation from C[L0] to RC is an iterated Darboux trans-
formation [18] in the sense that it is achieved by N successive conju-
gations by linear operators of the form Y = ∂ − d

dx
logφ(x) for eigen-

functions φ(x). In particular, in this case it is the iterated Darboux

transformation by the N functions ci(~f).

4. The Grassmannian Gr(Dn)

Consider the linear map γ : Dn → Dn which takes c to γ(c) = c ◦ z.
Note that the kernel of this map is the n dimensional space

ker γ = 〈(δ0, 0, . . . , 0), . . . , (0, 0, . . . , 0, δ0)〉.
Then, one may consider the inverse map acting on subspaces

γ−1 : Gr(N,Dn) → Gr(N + n,Dn).

Consequently, γ−1 is a map on the set G̃r(Dn).

Let Gr(Dn) = G̃r(Dn)/ ≈ be the quotient by the equivalence relation
induced by setting C ≈ γ−1(C). To see that this has the structure of
an infinite dimensional grassmannian, note that γ−1 embeds Gr(N,Dn)
in Gr(N + n,Dn) and that Gr(Dn) is the direct limit as N → ∞.

It is easy to check that this quotient agrees with the Darboux trans-
formation construction introduced above. In particular, if C ′ = γ−1(C)
(and thus C and C ′ represent the same equivalence class in Gr(Dn),
then RC and RC′ are the same ring of operators.

First let c ∈ C. By definition, this is equal to c′ ◦ z for some c′ ∈ C ′.
Now, take any p ∈ AC′ and compute that c ◦ p = c′ ◦ z ◦ p = c′ ◦ p ◦ z =
c′2◦z = c2 ∈ C. Thus AC′ ⊂ AC . Similar arguments prove the converse.

Furthermore, one may check that KC′ = KCL0. (Note that KCL0 ·
c′(~f) = KC · c′ ◦ z(~f) = KC · c(~f) = 0, and so it is the unique monic
operator of order n + r with the appropriate kernel.) Consequently

KC′p(L0)K
−1
C′ = KCp(L0)K

−1
C .

In the remainder of the paper, I will abuse notation by referring to a
vector space of distributions C in the grassmannian Gr(Dn). In such a
situation, what is actually meant is any choice of representative of the
class [C] ∈ Gr(Dn).

5. The Grassmannian Grn

Here we review relevant facts about the grassmannian Grn [20, 22]
which is often used in the context of the KP hierarchy.

Consider the Hilbert space Hn of square-integrable vector valued
functions S1 → C

n, where S1 ⊂ C is the unit circle. Denote by ei for
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0 ≤ i ≤ n−1 the n-vector which has the value 1 in the i+1 component
and zero in the others. Aside from a shift in index, this is the standard
basis of C

n. This basis will be extended to the basis {ei|i ∈ Z} of Hn

for which ei = zaeb when i = an + b for 0 ≤ b ≤ n − 1. The Hilbert
space has the decomposition

(20) Hn = Hn
+ ⊕Hn

−

where Hn
+ is the Hilbert closure of the subspace spanned by ei for i ≥ 0

and Hn
− is the Hilbert closure of the subspace spanned by ei for i < 0.

Then Grn denotes the grassmannian of all closed subspaces W ⊂ Hn

such that the orthogonal projection W → Hn
− is a compact operator

and such that the orthogonal projection W → Hn
+ is Fredholm of index

zero.

Definition 4. Given a point W of the grassmannian, denote by AW

the ring

(21) AW = {f(z) =

N∑

i=−∞

ciz
i|N ∈ N, ci ∈ C, fW ⊂W}.

In the case that AW contains an element of every sufficiently large or-
der N , the point W can be achieved as the L2 boundary values of the
section of a rank n holomorphic vector bundle over a complete irre-
ducible complex curve X [20] after the removal of a specified smooth
point x∞ where a specified trivialization is used to identify sections of
the bundle with C

r valued functions. In this case, the ring AW contains
the coordinate ring of the curve X − {x∞} [20].

5.1. The Dual Mapping. We define the “dual map” by the formula

(22) C ∈ G̃r(Dn) → WC = z−N/nVC

where N = dimC,

(23) VC := {~p(z) ∈ C[z]n|c(~p(z)) = 0 ∀c ∈ C}
and the overline indicates Hilbert closure in Hn.
Note: By construction, this map is well defined on equivalence classes
in Gr(Dn). In fact, if C ′ = γ−1(C) then VC′ = zVC . Thus, since
dimC ′ = n+ dimC, WC′ = WC . It will be shown below that the dual
map embeds the grassmannian Gr(Dn) in the grassmannian Grn.

Claim 2. The space WC is in fact a point WC ∈ Grn

Proof. It is clear that π− : WC → H− is compact and that all its
elements are L2(S1). The only thing to check is that dim ker π+ =
dim coker π+. To see this, note that the projection map from VC to
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H+ has N dimensional cokernel and 0 dimensional kernel. Then, mul-
tiplication by z−N/n shifts the index of the basis elements ei back by
exactly N . As a result, the dimension of the kernel and cokernel of
π+ : WC → H+ are both

(24) dim(

N−1⊕

i=0

ei ∩ VC).

�

Claim 3. The map C →WC embeds Gr(Dn) in Grn.

Proof. Suppose C1, C2 ∈ Gr(Dn) get sent to the same point W ∈ Grn

via the dual map. Equivalence classes in Gr(Dn) contain elements of
arbitrarily high dimension, and so we may suppose that C1 and C2

are chosen such that dimC1 = dimC2 = N . Then VC1
= VC2

=
zN/nW ∩ C[z]. But Dn embeds in the dual of C[z]n and so the spaces
Ci are identified by their kernels. �

Definition 5. Let Grn
rat ⊂ Grn denote the image of Gr(Dn) under the

dual isomorphism. The relationship between the grassmannian Gr(Dn)
and Grn

rat is that of dual grassmannians [7]. In particular, the infi-
nite dimensional subspace WC corresponds to its “perpendicular com-
plement” C, which in this case is finite dimensional because WC has
finite codimension in z−N/nHn

+. This justifies the term “dual map”
since it is indeed the classical dual isomorphism between Gr(Dn) and
its image in Grn.

Note that every point WC ∈ Grn
rat satisfies the condition

p(z)Hn
+ ⊂WC ⊂ z−jHn

+

for some positive integer j and polynomial p(z). Thus, it is part of the
vector generalization of the subgrassmannian Gr1 described in [22] and
the finitely supported used here are directly analogous to those used in
that paper to find the τ -function for the N -soliton.

Claim 4. In the special case that W = WC for some C ∈ Gr(Dn), the
rings AW (defined in Equation 21) and AC (defined in Equation 4) are
the same.

Proof. Let p(z) ∈ AC and ~q(z) ∈ VC . Then c(p(z)~q(z)) = c ◦ p(~q) = 0
because c ◦ p ∈ C. Consequently, p(z) ∈ AW and so AC ⊂ AW .

Furthermore, note that AW ⊂ C[z] since if p(z) ∈ AW it must satisfy
pVC ⊂ VC . Now suppose p(z) ∈ AW , then p(z)~q(z) ∈ VC for all ~q ∈ VC

which implies that p(z)VC ⊂ VC and so, by duality c ◦ p ∈ C for all
c ∈ C. �
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6. KP Solutions

The vacuum operator L0 can be given dependence upon the temporal
parameters1 t := (x, t2, t3, t4, . . .) so as to satisfy the n-KdV equations

(25)
∂

∂ti
L0 =

[(
L

i/n
0

)
+
, L0

]
.

Furthermore, we also assume that the eigenfunctions fj ∈ F satisfy the
equations

(26)
∂

∂ti
fj(x, t, z) =

(
L

n/i
0

)
+
fj(x, t, z).

Given an n-KdV solution L0(x, t) and a basis of eigenfunctions ~f(x, t, z) =
(f1, . . . , fn) as above, the paper [20] associates to each point W ∈ Grn

a solution LW to the KP hierarchy, a vector of eigenfunctions ~ψW (x, z)
and a commutative ring of ordinary differential operators RW which
commute with LW . The main result of this paper is that in the case
W = WC for some C ∈ Gr(Dn), the KP solution can be simply deter-
mined as the iterated darboux transformation described above.

Definition 6. Let Ψ0 := Wr(f1, . . . , fn) denote the Wronskian matrix
of the eigenfunctions fi. Then, associated to a choice of W ∈ Gr is the

vector Baker function ~ψW (x, z) [20], which is the unique function such
that

a) ~ψW (x, z) =

(
∞∑

i=0

ai(x)e−i

)
Ψ0 with a0(x) ≡ 1.

b) ~ψW (x, z) ∈W for all x in its domain.

Lemma 4. Let C ∈ Gr(Dn) and W = WC ∈ Grn be its image under
the dual map. Then the vector Baker function of W can be computed
as

(27) ~ψW = z−N/nKC
~f

Proof. Let ~φC(x, z) := z−N/nKC
~f . It is sufficient to note that ~φC(x, z)

has the properties (a) and (b) from Definition 6. Define the vector
~α := (α1, . . . , αn) by the formula

(28) Kfi(x, z) =
n−1∑

j=0

αj(x, z)

(
∂

∂x

)j

fi(x, z).

1It is convenient to identify the spatial parameter x with the temporal parameter
t1.
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Then note that ~φC = z−N/n~αΦ0. However, it is clear that z−N/n~α is of
the form

∑
ai(x)e−i. In fact, this is true merely because K is a monic

operator of order N and so α0(x, z) is a monic polynomial in z of degree
N/n and each αj for j > 0 is a polynomial of lower degree. This shows

that ~φC satisfies property (a). Furthermore, note that ~g(z) ∈ WC if
and only if

(29) c(zN/n~g(z)) = 0 ∀c ∈ C.

However, it then follows that ~φC satisfies property (b) as well since for
~g = φC

c(zN/n~g) = c(K ~f)(30)

= Kc(~f)(31)

= 0(32)

for all c ∈ C by definition of K. �

Definition 7. (Previato-Wilson [20]) Given W ∈ Grn, let S be the

unique 0th order pseudo-differential operator such that ~ψ = S ~f (where

application of pseudo-differential operators to ~f is defined so that L−1
0
~f =

z−1 ~f). Then LW = SL
1/n
0 S−1 is a solution to the KP hierarchy.

Lemma 5. For C ∈ Gr(Dn) and W = WC ∈ Grn, the operators
K = KC and S = SW are related by the formula

S = K(L0)
−N/n.

Proof. The pseudo-differential operator L
−N/n
0 has order −N and K

has order N . Consequently, K(L0)
−N/n has order 0. Furthermore, by

definition L−1
0
~f = z−1 ~f . Therefore,

K(L0)
−N/n ~f = z−N/nK ~f

which, by Lemma 4, is the vector Baker function. �

Theorem 1. If L0 satisfies the n-KdV hierarchy (25) and ~f satisfies
(26), then for any C ∈ Gr(Dn), the pseudo-differential operator

LC = KCL
1/n
0 K−1

C

is a solution to the KP hierarchy. Furthermore, letting W = WC ∈ Grn

be the image of C under the dual isomorphism, then LC = LW , the KP
solution associated to (W,L0) by the Krichever-Novikov construction
[12, 13] as described in [20].
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Proof. By definition, LW = SL
1/n
0 S−1, but we have by Lemma 5 that

this is K(L0)
−N/nL

1/n
0 L

N/n
0 K−1 = KL

1/N
0 K−1 = LC . Then, since LW

is a solution to the KP hierarchy, so is LC . �

7. Tau Functions

The present section demonstrates that a Wronskian formula for τ -
functions analogous to the one utilized in [25] holds in Grn

rat. It will
first be necessary to define precisely what is meant by a τ -function in
this context since τ -functions were not discussed in [20]. Consequently,
the following can be seen as the definition of τ -functions for the grass-
mannian construction described by Previato and Wilson in [20].

As you will see, it is merely the standard definition applied to Grn

with time dependence determined by the matrix Ψ0. However, the
definition raises some interesting questions which will not be addressed
in the present work. The established theory of τ -functions is quite
deep, relating topics such as bilinear forms of integrable systems [6],
the Plücker coordinates of infinite dimensional grassmannian manifolds
[21, 22], representation theory of infinite dimensional Lie algebras [3, 8],
and “bosonization” (the manifestation of a fermion in a bosonic field)
[17, 24]. Although the relationship of the τ -functions defined below
to the the first two topics will be discussed, it is not clear how (or if)
they relate to the representation of Lie algebras or the boson-fermion
correspondence.

7.1. General Definitions. A Hilbert basis for the point W ∈ Grn is
said to be an admissible basis [19, 22] if its projection to the standard
basis {ei} for Hn

+ differs from the identity by an operator of trace class
[23]. It is convenient to identify an admissible basis {wi} with the linear
map

w : Hn
+ → W

ei 7→ wi.

The frame bundle of Grn is the set of pairs (W,w) where W ∈ Grn

and w : Hn
+ →W is an admissible basis in the sense discussed above.

Let § be the set of sequences (s0, s1, · · · ) such that si < si+1 and
si = i for i sufficiently large. Then given some S ∈ §, the subspace
WS ⊂ Hn spanned by esi

is a point of the grassmannian (in fact, it
is the center of a Schubert cell) and {esi

} is an admissible basis. For
example, S+ := (0, 1, 2, · · · ) generates the standard basis for Hn

+.
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Definition 8. Let Λ denote the infinite alternating exterior algebra
generated by the alternating tensors

es0
∧ es1

∧ · · ·
for all S ∈ §. Given an admissible basis determined by the map w, we
use the notation |w〉 to denote the alternating tensor

|w〉 = w0 ∧ w1 ∧ · · · ∈ Λ.

Note, in particular, that if w and w′ are two admissible bases for
W , then |w〉 = λ|w′〉 for some constant λ 6= 0. Consequently, |W 〉 is a
well defined element of PΛ (namely, the class of |w〉 for any admissible
basis w of W ). Thus, this procedure embeds the grassmannian in a
projective space. The Plücker coordinates are indexed by the set § and
are computed as the determinant projection map to WS with w [19].
Furthermore, denoting by 〈S|W 〉 the Plücker coordinate corresponding
to S ∈ § for the point W ∈ Grn, one can expand |W 〉 in a formal sum

|W 〉 =
∑

S∈§

〈S|W 〉es0
∧ es1

∧ es2
∧ · · ·

For notational convenience, let
Of course, each Plücker coordinate by itself gives very little informa-

tion, since they are only projectively defined. All one can say about a
single coordinate is whether it is zero or not. Since 〈S+|W 〉 can also
be computed as the determinant of the projection map from W to Hn

+,
it is clear that the following holds: 〈S+|W 〉 = 0 if and only if W is the
graph of some function FW : Hn

+ → Hn
−. This is generically true and

the set of points such that 〈S+|W 〉 6= 0 is standardly referred to as the
big cell .

To define τW requires an operator A acting on the frame bundle. As
described in [19], an operator on the frame bundle is a pair (g, q) where
g ∈ GL(Hn) which has the form

(33) g =

(
a b
c d

)

relative to the splitting Hn = Hn
+ ⊕ Hn

− and q : Hn
+ → Hn

+ such that
aq−1 differs from the identity by an operator of trace class. The action
on the frame bundle is given by

A : (W,w) → (gW, gwq−1).

Note: In the case that g is invertible and c = 0 (where c is as in
(33)), one may always choose q = a. Thus, in such a case, it is always
sufficient to merely specify g. This will be the case in all examples that
follow.
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We can also let A act on |w〉 by defining

|A|w〉 = |gwq−1〉.
Finally, letting A depend on time parameters t = (t1, t2, . . .) we can
define

(34) τW (t) = 〈S+|A|W 〉
making τ a projectively defined function of the time variables. (You can
view A(t) as a “connection” allowing one to compare the first Plücker
coordinate at different points in the orbit {g(t)W}.)

In different contexts, different choices of A are appropriate. For
example, to construct τ -functions of the KP hierarchy [22], let n = 1
and A = (g, a) where g = exp(

∑
tiz

i).

Definition 9. The τ -function for the to the point W ∈ Grn (also with
L0 and Ψ0 fixed as above) is given by (34) with A(t) = (Ψ−1

0 (t), a).

This definition having been made, it now remains to demonstrate
that the definition is useful. In particular, it remains to show that τW
provides information about the KP solution associated to W and L0.
The following subsection will determine τW as a Wronskian determinant
in the case of W ∈ Grn

rat. As an application, it is shown how one is
able to determine solutions to the KP equation using τW .

7.2. The Case of W ∈ Grn
rat. The major result of this section is that

for W = WC for some C ∈ Dn, the corresponding τ -function is easily
computed in terms of the distribution space C.

Theorem 2. Suppose the point W ∈ Grn
rat is given by the mn dimen-

sional subspace C ⊂ Dn, and {ci} is any basis of C, then τW can be
determined as the Wronskian determinant

τW = det(
di

dxi
cj(f1, . . . , fr)) 1 ≤ i, j ≤ mn.

Proof. Without loss of generality, it will be assumed that W is in the
big cell. This is sufficient since the big cell is dense in Grr and so the
general case follows by continuity.

Then one may choose for the map w generating an admissible basis
of W the map of the form

w =

(
I
FW

)

for the operator FW : Hn
+ → Hn

− whose graph is W . If Ψ−1
0 has the

form

Ψ−1
0 =

(
a b
0 d

)
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with respect to the splitting Hn = Hn
+ ⊕Hn

− then τW (t) can be found
as the determinant

τW = det(I + bFWa
−1)

= det(a−1) det(I + bFW a
−1) det(a)

= det(I + a−1bFW ).

Let αi : Hn
+ → C for 1 ≤ i ≤ mn be defined by the property that

~f +

mn∑

i=1

αi(~f)e−i ∈W ∀~f ∈ Hn
+.

Furthermore, define Ei = a−1be−i for 1 ≤ i ≤ rN . By the functorial
isomorphism between Hn∗

+ ⊗Hn
+ and Hom(Hn

+, H
n
+) [14], we can view

the map a−1bFW : Hn
+ → Hn

+ as the sum
∑mn

i=1 αi ⊗ Ei. Thus

τW = det(I +

mn∑

i=1

αi ⊗Ei).

Then, as one can see by rewriting this matrix in terms of any basis
including the elements Ei, the determinant on the right is equal to the
determinant of the mn×mn matrix [22] T defined by

Tij = δij + αi(Ej).

Note that by definition,

c(zm ~f +
mn∑

i=1

αi(~f)emn−i) = 0

for all c ∈ C and ~f ∈ Hn
+. Thus, in particular, we have

(35) cj(z
m ~f) = −

mn∑

i=1

cj(emn−iαi(~f))

for the each basis element 1 ≤ j ≤ mn. Therefore,


c1(z

m ~f)
...

cmn(zm ~f)


 = M



α1(~f)

...

αmn(~f)




where M is the mn×mn matrix with elements Mij = −cj(emn−i).
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Then, by factoring out the matrix2 M−1 from the matrix T , we find
3

τW = det(T )(36)

= det(M−1) det(Mij + cj(Eiz
N ))(37)

= det(M−1) det(cj(z
N(a−1b+ I)e−i))(38)

= det(M−1) det(cj(z
n(−e−iΨ

−1
0 )−Ψ0))(39)

= det(M−1) det(cj(
∂i

dxi
(f1, . . . , fn))).(40)

Then, since τW is defined only up to a constant multiple in any case,
the constant det(M−1) can be ignored and the theorem is proved. �

Note: The Wronskian formula above was used in [10] to investigate
bispectral algebras of ordinary differential operators. Consequently,
an application for these τ -functions has already been found which is
unrelated to the dynamical aspects of soliton equations. In the next
section, the role of these τ -functions in the KP theory will be elucidated
allowing for the construction of new KP solutions.

7.2.1. τ and Darboux Transformations. It is known that the iterated
Darboux transformation of the KP solutions corresponding to τ0 by
the eigenfunctions φj has the effect

τ0 7→ (τ0)(Wr(φj))

on the τ -function [1, 18]. (That is, it multiplies τ by the Wronskian of
the eigenfunctions.)

Since it was shown above that the operator LW corresponding to a
point W ∈ Grn

rat is the iterated darboux transformation of L0 by the
eigenfunctions

φj = cj(f1, . . . , fn),

one may conclude that τLW
is the product of τL0

with the Wronskian
of these functions.4 Furthermore, we found above that this wronskian
is τW and so we have the following result:

2Considering the equations (35) as a system of mn equations to determine the
mn “unknowns”, αi, it becomes clear that the matrix M−1 exists if and only if αi

exist. Consequently, the matrix M is invertible because W is in the big cell.
3The notation (~f)

−
in step (39) above denotes projection onto Hn

−

and moving

from (39) to step (40) is achieved by the substitution zjnfi → L
j
0
fi to remove

factors of z, followed by multiplication by a matrix of determinant 1 written in
terms of the coefficients in the power series representation of Ψ−1

0
around z = 0.

4Here τLW
and τL0

denote appropriate gauges of the τ -functions corresponding

to the solutions LW and L
1/n
0

of the KP hierarchy.
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Claim 5. The τ -function corresponding to LW is

τLW
= τL0

τW

or alternatively, τW is a quotient of τ -functions

τW =
τLW

τL0

.

It it then clear that τW is not itself a τ -function of the KP hierar-
chy in the usual sense. In particular, we have seen that the product
τL0

τW satisfies the Hirota bilinear equations of the KP hierarchy. So,
unless τL0

= eαt1+β, it is not the case that τW is also a solution of the
equations. However, it might be profitable to consider the functions
τW as solutions to the “non-autonomous” bilinear equation given by
first multiplying by τL0

and then applying the bilinear operators.

7.3. Example. The Airy vacuum is the operator

L0 = ∂2 − 2x

3t+ c

whose normalized vector of eigenfunctions ~f = (f1, f2) can be written
simply in terms of the classical Airy functions Ai(z) and Bi(z) (see
[9] for details). For any value of c ∈ C, this operator is a solution of
the first two equations of the KdV hierarchy. (Dependence upon time
variables ti for i > 3 will not be considered in these examples for the
sake of simplicity.)

Consider, for example,

c1(f, g) = f(0) + f(2) c2(f, g) = g(0).

The τ -function of the corresponding point

W1 = {(1 − z−1, 0), (0, 1), (z − 2, 0), (0, z), (zn(z − 2), 0), (0, zn), . . .}
can be computed as the wronskian determinant of {c1(~f), c2(~f)}. In
the case of vacuum L0 = ∂2 − 2x

3t
this turns out to be

τW1
= 1 +

−e2yΓ(1/3)Γ(2/3)

4
(3Ai[θ(3t+ x)]Ai′[θx] − 3Ai[θx]Ai′[θ(3t+ x)]

+
√

3Ai′[θ(3t+ x)]Bi[θx] +
√

3Ai′[θx]Bi[θ(3t + x)]

−
√

3Ai[θ(3t+ x)]Bi′[θx] − Bi[θ(3t+ x)]Bi′[θx]

−
√

3Ai[θx]Bi′[θ(3t+ x)] +Bi[θx]Bi′[θ(3t+ x)])

for θ = ( 2
3t

)1/3. Then u(x, y, t) = 2x
3t+c

+ ∂2

∂x2 log τW is a non-rational so-
lution to the KP equation whose geometric spectral data are a rational
curve with a node (given by identifying the points z = 2 and z = 0)
and a rank two bundle.
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Next, consider the two dimensional dual space with basis

c1(f, g) = f ′(0) + kf(0) c2(f, g) = g′(0) +
c

2
f(0) + kg(0).

(These conditions clearly place a cusp at the point z = 0 of the rational
spectral curve.) Under the dual mapping, this corresponds to the point

W = {(−k + z−1,−c/2), (0, ck − cz−1), (z, 0), (0, z), . . .}.
These coordinates were chosen specifically to generate a rational solu-
tion when used in conjunction with the Airy vacuum. In particular,
one finds that the corresponding τ -function is

τW =
(
x(3t+ c) − 2(y + k)2

)

The KP solution corresponding to this τ -function is

u(x, y, t) = − 2(3t+ c)2

((3t+ c)x− 2(y + k)2)2
− 2x

3t+ c

which was found through alternative means by Grünbaum [5]. Note
that the parameters k and c determine the y and t flow respectively
and, in particular, that the coefficients of the dual elements are linear
functions of these KP flow parameters.

8. Spectral Geometry and True Rank

Since the commutative ring of ordinary differential operators RC is
isomorphic to the subring AC ⊂ C[z] for all values of the temporal pa-
rameters, it is clear both that they induce an isospectral deformation of
the ring and furthermore that the ring is a (singular) rational curve. In
particular, since AC is determined from C[z] through differential condi-
tions at the support of the elements of C, the curve is constructed from
P

1 with local parameter z by introducing singularities (both cuspidal
and nodal) at z = λi for all λi in the support of C.

The solutions to the KP hierarchy corresponding to higher rank geo-
metric spectral data are of particular interest [12, 13, 20]. Although all
rings RC generated by the construction above are commutative rings
of rank n, and therefore have spectral data consisting of a rank n sheaf
over their spectral curves, we would not like to consider all of the so-
lutions LC to the KP hierarchy as “rank n” solutions. In particular, if
RC is (resp. is not) contained in some larger commutative ring of lower
rank, one refers to LC as having “fake rank n” (resp. true rank n). If we
define the true rank of an ordinary differential operator to be the rank
of its centralizer, then the following lemma (which also appears in [10],
but is repeated here for clarity) demonstrates that rank is preserved by
Darboux transformation.
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Lemma 6. If X = Y1Y2 and X̂ = Y2Y1 then X and X̂ have the same
true rank.

Proof. If Q is an operator commuting with X, then

0 = Y2[Q,X]Y1(41)

= Y2QY1Y2Y1 − Y2Y1Y2QY1(42)

= [Y2QY1, X̂].(43)

Let r be the true rank of X̂. Then, by (43), we have ord(Y2QY1) ≡
0 mod r. But, ord(Y2QY1) = ord(Y2Y1)+ord(Q) and since ord(Y2Y1) ≡
0 mod r we conclude that ord(Q) ≡ 0 mod r. Therefore, the true rank

of X̂ divides the true rank of X. Then, by symmetry, the true ranks
are equal. �

As a consequence, we have the following result:

Theorem 3. The ring RC has true rank n iff the centralizer of the
vacuum operator L0 is C[L0].

In particular, the Airy vacuum used in the examples above is of true
rank two [15] and therefore the KP solutions constructed there are of
true rank two as well.
Note: [Acknowledgements] The author appreciates the advice and as-
sistance of Emma Previato (my thesis advisor on [9] where many of
these ideas appeared originally), Mitchell Rothstein (my co-author on
[10]) and Maarten Bergvelt. Finally, after the completion of this work,
it has come to my attention that some similar results have been ob-
tained by Bakalov, Horozov and Yakimov in their paper [2].
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