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Abstract

In one variable, it is possible to describe explicitly the differential operators that commute with a given one, at least when
the centralizer of the given operator has rank 1. So far, a generalization of the theory to several variables has been developed
(inexplicitly) only for matrices, whose size increases with the number of variables. We propose to develop an algebraic
theory of commuting partial differential operators (PDOs) by formulating a generalization of the one-variable techniques, in
particular Darboux transformations and differential resultants. In this paper, we present a counter example to a one-variable
feature of maximal-commutative rings and some facts, examples and questions on differential resultants. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In the 1920s, when Burchnall and Chaundy [3,4] undertook their classification of commutative rings of differential
operators there was no reason to expect an application in nonlinear dynamics. With hindsight, however, we see that
they had discovered one important aspect of the modern theory of integrable systems: the spectral curve [20]. As
we will explain in the next section, they even came quite close to discussing the commuting flows. Of course,
it was not until the discovery of solitons and the integrability of the KdV equation that this theory would be
rediscovered and placed in an appropriate context. In particular, the Burchnall–Chaundy correspondence between
ordinary differential operators (ODOs) and algebraic curves provides an algebraic approach to handling the inverse
spectral problem for the finite-gap operators, with the spectral data being encoded in the spectral curve and an
associated line bundle. Moreover, just as a classical integrable system has an action-angle map which linearizes its
flow, the (quasi-)periodic solutions to the soliton equations are linearized by the Buchnall–Chaundy correspondence
in the sense that the spectral curve is invariant and the line-bundle changes according to a linear flow on its Jacobian
variety [14].

In this paper, we will discuss some aspects of the generalization of the Burchnall–Chaundy problem to the higher
dimensional case of a commutative ring of partial differential operators (PDOs). Though this difficult problem is far
from completely solved, it is clearly of interest not only for its own sake but for its potential connections to integrable
systems. In fact, the study of commutative rings of PDOs and their algebro-geometric classification is already of
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interest in the context of quantum integrable systems where they are literally the commuting Hamiltonians of a finite
dimensional system [2,6,12]. In addition, there have been several attempts at generalizations of the KP hierarchy
of integrable PDEs to the case of a system written as a Lax pair in terms of PDOs [17,18,21] and one would expect
commutative rings of PDOs to play an analogous role in that situation.

In one variable, there exists a satisfactory classification of rings of differential operators that are (maximal)
commutative. In several variables, even the simplest generalizations seem to be unknown and in this report we give
examples and pose questions that may suggest a theory to be developed. To motivate what we do, we briefly recall
the one-variable case and selected results in several variables.

We will focus our attention here on two particular aspects of the generalization of Burchnall–Chaundy theory to the
higher dimensional case. Specifically, we address the question of whether one may expect a maximal-commutative
ring of PDOs to be the coordinate ring of an affine algebraic variety (as in the one-dimensional case where it is
always the coordinate ring of an affine curve) and whether the differential analog of the resultant provides a means
for determining the polynomial equations satisfied by an algebraically dependent set of commuting PDOs.

1.1. The one-dimensional case

In the one-variable case with analytic coefficients the classification was found by Burchnall and Chaundy [3,4]
in the 1920s by essentially formal methods of differential algebra and some algebraic geometry. They stated the
problem quite simply: characterize the operators L = ∂n + un−2(x)∂

n−2 + · · · + u0(x) whose centralizer is not
isomorphic to the polynomials in one variable. Indeed, for L general enough, the only differential operators that
commute with it will be the polynomials in L with constant coefficients. Here, we consider the centralizer of L
in the ring of ODOs, where multiplication is composition and therefore obeys the defining rule: [∂, x] = 1; with
a view to introducing several variables below, we write ∂ = ∂/∂x although here we are studying the one-variable
case. The question is an algebraic one, and we will not specify the function space where the coefficients ui(x) live.
Noting that the centralizer of an ODO is itself commutative, Burchnall and Chaundy proceeded to show that it is
a ring of ‘dimension’ 1, in other words, the affine ring of an algebraic curve (this observation goes back at least to
Schur but Burchnall and Chaundy appear to reproduce it independently). The curve can be seen concretely if we
consider the ringC[L,B] generated by a commuting pair, where B = ∂m+vm−2(x)∂

m−2 +· · ·+v0(x). The curve
is then the set of points (λ, µ), such that (L− λ,B − µ) have a common solution f (x), or equivalently such that
the determinant of the (n+m)× (n+m) “differential resultant” matrix [19], a non-zero polynomial p ∈ C[λ,µ],
is equal to zero. The commuting operators satisfy (identically in x) the algebraic equation p(L,B) = 0. Moreover,
in the “rank-1 case” gcd(n,m) = 1 [20], one has that p(λ,µ) = 0 is the affine equation of the spectral curve. More
generally, if A is any commutative ring of ODOs whose rank is 1 (i.e., A contains two elements of coprime orders),
then A is isomorphic to a finitely generated algebra C[x1, x2, . . . , xs]/I , where the ideal I contains at least (s − 1)
independent equations (in algebro-geometric terminology, SpecA is an affine curve).

Burchnall and Chaundy’s contribution is deeper in fact, because they were able to classify all the (rank-1)
isospectral algebras, namely those associated to isomorphic isospectral curves. They started with the observation
that the (Darboux) transformation A �→ GAG−1 (where G = ∂ − (f (x, P0)/f

′(x, P0)) is the greatest common
divisor of the operators in A, for a common eigenfunction f which depends on a given point P0 of the curve,
explicitly in the above example Lf(x) = λf (x), Bf(x) = µf (x), f (x0) = 1, a normalization) does not change the
curve but changes the set of points P1, . . . , Pg , where the common eigenfunction f (x, P ) of the ring has a pole. In
classical geometric language, the divisor P1 + · · · + Pg , changes into P1 + · · · + Pg + ∞ − P0 (the affine curve is
completed by adding a smooth point ∞) and the set of divisors up to linear equivalence is called the Jacobi variety
of the curve. This was then Burchnall and Chaundy’s crowning result: the set of isospectral algebras associated to
a given spectral curve X of genus g is an open subset of a complex torus of dimension g, namely the Jacobi variety
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of the curve; moreover, translation in x is a linear vector field on the torus, which they determined explicitly in
abelian coordinates. In the 1970s, and in consequence of the renewed interest in the spectral problem promoted by
the Zakharov–Shabat scattering problem, Krichever [14] solved the inverse spectral problem explicitly (using the
Riemann theta function), associating to a curve and a divisor (up to choice of certain normalizations) a commutative
algebra A of ODOs.

1.2. Higher dimensional case

In view of the success in the one-dimensional situation and the potential applications in the higher dimensional
case, it is natural to ask at least the following questions in several variables:

1. Is SpecA an affine variety of dimension N for any maximal-commutative ring A of PDOs in N variables?
Without entering the technical definitions of algebraic geometry, a major implication of this would be for A

to be finitely generated as a C algebra, which we disprove below.
2. For a ring A with generators Li (1 ≤ i ≤ N + 1), what is the relationship between the differential resultant of
Li − λi and the equations of such a variety?

More ambitiously, of course, one would ask for isospectral flows, a complete classification, and the explicit inverse
spectral problem, in increasing order of difficulty. A beautiful generalization of the Burchnall–Chaundy theory was
given by Nakayashiki [17,18] using the Fourier–Mukai transform. He associates commutative rings in N variables
to a suitable N -dimensional abelian variety and some additional choices, one ring for each element of the Picard
variety of the abelian variety. But these are not scalar operators, rather they have (N ! ×N !) matrix coefficients.

In this report, we give a negative answer to question (1) by using techniques developed in [13] and we offer some
observations, natural conjectures, and a strategy to treat (2). We deal with the scalar case only.

2. Maximal-commutative rings

It is well known that the commutative rings of ODOs are (finitely generated) coordinate rings for algebraic curves.
This forms the foundation of the Burchnall–Chaundy theory of such rings [3,4,20]. In contrast, very little is known
about the algebro-geometric structure of commutative rings of PDOs. A question of interest is to address the problem
of whether every commutative subring is contained in a (larger) commutative ring requiring only a finite number
of generators over C. Such a result is relevant, for instance, to the algebro-geometric investigations of quantum
integrable systems [2,12].

In this section, we use techniques from soliton theory (namely Darboux transformation and Baker–Akhiezer
functions) to study the structure of certain commutative rings of differential operators. We are able to show that
these rings are maximal in the sense that they are not contained in any larger commutative subrings of the ring of
differential operators. Then, in one example, we study the structure of this ring more closely and note that it cannot
be generated by a finite number of elements as aC algebra and hence is not the coordinate ring of an affine algebraic
variety.

Notation. LetD = C(x1, . . . , xn)[∂1, . . . , ∂n] be the ring of rational coefficient differential operators in n variables,
where ∂n = ∂/∂xn is differentiation and composition is determined by action on functions. It will be useful to
refer also to D0 = C[∂1, . . . , ∂n] ⊂ D (the constant coefficient differential operators) as well as ΨD, a ring of
pseudodifferential operators ([22] or [11] for notation but here regarded as formal objects) containing D as well
as the inverse of the particular operator K ∈ D which will be important below and ΨD0, the constant coefficient
pseudodifferential operators C((∂−1

1 , . . . , ∂
−1
n )).
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2.1. What commutes with many constant coefficient operators?

In general, it is difficult to address the question of whether a commutative ring of PDOs is maximal. The key
observation that allows us to do it here is the following: although the centralizer of a single constant coefficient
operator p(∂1, . . . , ∂n) will contain non-constant coefficient operators, an operator commutes with all constant
coefficient multiples of p(∂1, . . . , ∂n) if and only if it also has constant coefficients.

Lemma 2.1. Let p ∈ D0 be a non-zero constant coefficient differential operator. Then any operatorL ∈ ΨD which
commutes with p as well as all operators Pi := ∂i ◦ p(∂1, . . . , ∂n)(1 ≤ i ≤ n) is also constant coefficient (i.e.,
L ∈ ΨD0).

Proof. Let us suppose that [p,L] = [Pi, L] = 0. Then, since p ◦ L = L ◦ p and p ◦ ∂i = ∂i ◦ p it follows that:

0 = [Pi, L] = ∂i ◦ p ◦ L− L ◦ ∂i ◦ p = ∂i ◦ L ◦ p − L ◦ p ◦ ∂i = [L ◦ p, ∂i].
Then, we note that lettingL◦p = ∑

fα(x1, . . . , xn)∂
α1
1 · · · ∂αnn be a series representation for this pseudodifferential

operator, then

[∂i, L ◦ p] =
∑
f ′
α(x1, . . . , xn)∂

α1
1 · · · ∂αnn

where prime denotes differentiation with respect to xi . Hence, ifL◦p commutes with each ∂i , thenL◦p has constant
coefficients. However, this provides a linear relation between any coefficient of L and certain higher ones. This is
only possible if the coefficients are all constant; indeed if they were not, one can get a contradiction easily, first by
assigning an (e.g., lexicographic) order to the monomials, then multiplying the two monomials in L,p that contain
the highest power of a given variable whose coefficient in L is non-constant; the product cannot be cancelled. �

2.2. A maximal-commutative ring from Darboux transformation

Here, we will consider a special class of commutative rings of differential operators for which we are able to
demonstrate maximality using the results of the previous subsection. Suppose that the constant coefficient operator
p ∈ D0 factors as

p(∂1, . . . , ∂n) = L ◦K, L,K ∈ D. (1)

(See [1,13] for a discussion of some methods for achieving such factorizations.) Then the method of Darboux
transformation commonly used in the study of integrable systems [8,16] is to consider the (more complicated)
operator

P := K ◦ L = K ◦ p ◦K−1,

which shares many features with p since the two operators are conjugate. For instance, one may try to conjugate
other constant coefficient operators by K to produce operators that commute with P . In fact, given any constant
coefficient operator r(∂1, . . . , ∂n) ∈ D0 it follows that [K ◦r ◦K−1, P ] = 0. However, althoughK ◦r ◦K−1 ∈ ΨD
there is no reason to expect that it is in D. The content of the Theorem 2.1 is the statement that the ring of all
differential operators commuting with P which are produced in this way is a maximal-commutative ring.

Notation. Let K ∈ D be a differential operator and define

R0(K) := {r ∈ D0|K ◦ r(∂1, . . . , ∂n) ∈ D ◦K} ⊂ D0
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to be the subring of elements r ∈ D0 such that K ◦ r has K as a right factor. Then, the ring

R(K) := (K ◦D0 ◦K−1) ∩D = K ◦ R0(K) ◦K−1

is a commutative subring of D. In general, it will be the case that R(K) = C is trivial, but if K is chosen to be a
non-constant operator satisfying (1) then R(K) will contain differential operators.

Theorem 2.1. Let K ∈ D be a differential operator which is the right factor of some constant coefficient operator
p = L ◦K ∈ D0. Then if R′ is a commutative ring such that

R(K) ⊂ R′ ⊂ D,
it follows that R(K) = R′. In other words, R(K) is a maximal-commutative subring of D.

Proof. Let us suppose that Q ∈ D commutes with every element of R(K). We must show that Q is already in
R(K). Note that since p = L ◦K , one automatically has that Pi := ∂i ◦ p is in R0(K). Thus, we know that

[K ◦ Pi ◦K−1,Q] = 0 for 1 ≤ i ≤ n,
and hence conjugation in the ring of pseudodifferential operators gives

[Pi,K
−1 ◦Q ◦K] = 0, 1 ≤ i ≤ n.

By Lemma 2.1, this implies that

K−1 ◦Q ◦K ∈ ΨD0,

and so it is clear that Q is of the form K ◦ q(∂1, . . . , ∂n) ◦ K−1 for some constant coefficient pseudodifferential
operator q ∈ ΨD0.

However, we can also see that q ∈ D0 ⊂ ΨD0 is a constant coefficient differential operator. To show this we
introduce a normalized common eigenfunction

ψ(x1, . . . , xn, z1, . . . , zn) = 1

g(z1, . . . , zn)
K[ex1z1+···+xnzn ],

where the polynomial g is to be defined below. Note that regardless of the choice of g, we have by construction that

K ◦ L[ψ] = p(z1, . . . , zn)ψ, Q[ψ] = q(z1, . . . , zn)ψ.
One can write the function K[exp(

∑
xizi)] in the form

K[ex1z1+···+xnzn ] =
(∑N

α=1ρα(z1, . . . , zn)σα(x1, . . . , xn)

σ0(x1, . . . , xn)

)
ex1z1+···+xnzn,

where ρα are all non-zero polynomials in z1, . . . , zn and σα are distinct, non-zero monomials in x1, . . . , xn. We
choose g(z1, . . . , zn) to be the highest common factor of the polynomials ρα(z1, . . . , zn). We have thus constructed
ψ , so the product f (z1, . . . , zn)ψ is holomorphic in each zi for f ∈ C(z1, . . . , zn) if and only if f ∈ C[z1, . . . , zn]
is actually a polynomial.

Then notice that for any M ∈ D one still has that M[ψ] is holomorphic in zi . In particular, M[ψ] is always a
polynomial inC(x1, . . . , xn)[z1, . . . , zn] multiplied by the exponential function exp

∑
xizi . Putting this all together,

since we have already seen that Q[ψ] = q(z1, . . . , zn)ψ , we conclude that q(∂1, . . . , ∂n) ∈ D0 is a constant
coefficient differential operator.
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Finally, if q ∈ D0 has the property that K ◦ q ◦ K−1 ∈ D, then this implies that q ∈ R0(K) and hence that
Q ∈ R(K) in the first place. So no operators outside of R(K) have the property that they commute with every
element of R(K). �

2.3. An explicit example

It is still not clear from Theorem 2.1 whether the maximal-commutative subrings of D constructed by Darboux
transformation require an infinite number of generators overC. Certainly in trivial cases (e.g.,K ∈ D0), the resulting
ring may require only a finite number of generators. But it would be nice to prove that this is always the case or
alternatively to observe at least one example which does not. By considering a particular example in detail here, we
achieve the latter.

2.3.1. A subring of C[x, y]

Notation. LetRλ ⊂ C[x, y](0 �= λ ∈ C) be the subset

Rλ =
{
q(x, y) ∈ C[x, y]|qx

(
z,
λ

z

)
= qy

(
z,
λ

z

)
= qxy

(
z,
λ

z

)
≡ 0

}
.

In other words, Rλ is the set of polynomials q ∈ C[x, y], such that qx , qy and qxy all have a factor of xy − λ.
Note that C ⊂ Rλ and more importantly that if q1, q2 ∈ Rλ are two such polynomials, then q1 + q2 ∈ Rλ and
q1q2 ∈ Rλ. This obviously gives us the following lemma.

Lemma 2.2. Rλ is a proper subring ofC[x, y] containingC as well as every polynomial of the formρ(x, y)(xy−λ)3
for ρ ∈ C[x, y].

It will be shown below that for a particular choice of K ∈ D the maximal-commutative subring R(K) ⊂ D is
isomorphic toRλ. Therefore, it is interesting to note that this ring requires an infinite number of generators over C.

Lemma 2.3. The ringRλ has the form C[ω1(xy − λ)3, ω2(xy − λ)3, . . . ], where {ωi} is any basis of C[x, y] as a
vector space. In particular,Rλ is not finitely generated.

Proof. We must show that a polynomial q ∈ C[x, y] is in Rλ if and only if it is of the form g(x, y)(xy − λ)3 + c
for some g ∈ C[x, y] and c ∈ C. Clearly, such a q is an element ofRλ. Conversely, let us suppose that q ∈ Rλ and
therefore qx = (xy − λ)r(x, y). Then, since

qxy = xr(x, y)+ (xy − λ)ry(x, y)
also has a factor of xy − λ, one finds that r has a factor of xy − λ and hence qx actually has a factor of (xy − λ)2.
(Similarly, for qy .)

Now we have that qx = (xy − λ)2g(x, y) for some g ∈ C[x, y]. Then, integrating by parts with respect to x, one
has

q(x, y) = 1

3y

[
(xy − λ)3g(x, y)−

∫
(xy − λ)3gx(x, y) dx

]
.

Continuing to integrate by parts (choosing always to integrate (xy − λ)j , so that one gets higher powers of xy − λ
and higher derivatives of g) one gets a finite sum (since a high enough derivative of g will eventually vanish) of
terms each having a factor of (xy − λ)3, plus a constant of integration at the end.



72 A. Kasman, E. Previato / Physica D 152–153 (2001) 66–77

Now we note that Rλ cannot be constructed by a finite number of generators over C. We provide an argument
by contradiction; we are grateful to a referee for suggesting a more thorough argument than our original one. Let
t = xy − λ, treat x, t as independent variables, and argue in C[x, 1/x, t]. Suppose w.l.o.g. that wij = xiyj t3 =
xi(λ/x + t/x)j t3 = ∑j

p=0cjpx
i−j tp+3, with i, j < N , are generators. Then for xkt3 to be expressed as a product

of xi−j tp+3, the product must have only one term: p = 0 and k = i − j ≤ i < N , which is a contradiction for
k > N . �

2.3.2. Isomorphism to a ring of differential operators
Let us use the notation of the preceding subsection to describe a maximal-commutative ring of differential

operators. For this example, we will be working in two dimensions only, so n = 2. The constant coefficient
differential operator which we will factor is p(∂1, ∂2) = (∂1∂2 − λ)3(λ ∈ C) which factors as p = L ◦K with

K = x1x2(∂1∂2 − λ) ◦ 1

x1x2
,

and

L= ∂2
1∂

2
2 + 1

x1
∂1∂

2
2 − x−2

1 ∂
2
2 + 1

x2
∂2

1∂2 + 1 − 2λx1x2

x1x2
∂1∂2

+−1 − λx1x2

x2
1x2

∂2 − x−2
2 ∂

2
1 + −1 − λx1x2

x1x
2
2

∂1 + λ2 + 1

x2
1x

2
2

+ λ

x1x2
.

Lemma 2.4. A constant coefficient operator q(∂1, . . . , ∂n) ∈ D0 is an element of R0(K) if and only if the function

ψ(x1, x2, z) := x1x2 ex1z+x2(λ/z)

is in the kernel of the operator K ◦ q for all values of z ∈ C.

Proof. One direction is especially simple. If K ◦ q = Q ◦K , then

K ◦ q[x1x2 ex1z+x2(λ/z)] = Q ◦ x1x2(∂1∂2 − λ)[ex1z+x2(λ/z)] ≡ 0.

Conversely, let us suppose that K ◦ q annihilates this function. This means that M := K ◦ q ◦ x1x2 applied to
exp(x1z1 + x2z2) is zero for all z1z2 − λ = 0. But, note thatM applied to this exponential results in a polynomial
in zi with coefficients in C(x1, x2)multiplied by an exponential. This product vanishes on z1z2 − λ = 0 if and only
if the polynomial has a factor of z1z2 − λ which implies that

M = Q ◦ x1x2(∂1∂2 − λ)
for someQ ∈ D. Multiplying this equation by 1/x1x2 on the right proves the lemma. �

Using this lemma and the previous theorem, as well as the bispectrality [9,10] of the constant coefficient operators,
we demonstrate an isomorphism between R(K) andRλ.

Theorem 2.2. The ring R(K), known to be maximal commutative by the preceding theorem, is isomorphic to the
ringRλ (cf. Lemma 2.2).

Proof. Using Lemma 2.4 and Theorem 2.1, we know that R(K) is isomorphic to the ring

R0(K) = {q ∈ D0|K ◦ q[x1x2 ex1z+x2(λ/z)] ≡ 0}.
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However, since ∂zi := (∂/∂zi) commutes with differential operators in the variables xi , this property is equivalent
to saying that

∂z1∂z2 [K ◦ q[ex1z1+x2z2 ]] ≡ 0 ∀z1z2 − λ = 0.

This can be written as differential equations for q by applying all of these differential operators, clearing the
denominator by multiplying by a polynomial in x1, x2 and looking at the coefficients of each monomial in xi . These
will be differential expressions for polynomials in z1 and z2 including q which must vanish on z1z2 − λ. For this
to happen, it is necessary and sufficient that qx , qy and qxy all have z1z2 − λ as a factor. �

3. Resultants of commuting differential operators

Any set of n+1 commuting PDOs in n variables must satisfy a non-trivial algebraic equation (cf., e.g., the Lemma
of Section 1.1 in [2]). Is it possible to use linear algebra to determine this relationship (as is generally done in the
case n = 1)? In this section, we give a definition of resultants for PDOs (cf. [5]) including “spectral parameters”
and indicate their role in this regard.

3.1. Definitions

Fix 0 < n ∈ N and denote by Ωd the ( n+ d
n )-component vector

Ωd = (ωd1 , ωd2 , . . . ),

whereωdi run over all monomial, monic differential operators in the variables x1, . . . , xn of degree less than or equal
to d. In other words

ωdi ∈
{
∂
α1
1 . . . ∂

αn
n : αi ∈ N,

∑
αi ≤ d

}
.

By writing it as a vector, we are supposing that they have an ordering. Such an ordering is a choice, not determined
canonically, but the particular choice is not important to the following. Then, for any differential operatorL of order
d or less, we denote by �vd(L) the vector whose ith entry is the coefficient of ωdi in L. In particular, L = �vd(L) ·Ωd .
Let L1, . . . , Ln+1 be differential operators in the variables x1, . . . , xn having orders l1, . . . , ln+1, respectively.

Let N := −n+∑
li and construct the matrix Rµ = Rµ(L1, . . . , Ln+1) whose rows are �vN(ωN−li

j ◦ (Li −µi))
for all 1 ≤ i ≤ n + 1 and all 1 ≤ j ≤ ( n+N − li

n ). We call any maximal minor determinant of Rµ a partial µ
-shifted differential resultant. Note that each partial µ-shifted differential resultant is a polynomial in the variables
µi(1 ≤ i ≤ n+ 1) with coefficients that may depend on xj (1 ≤ j ≤ n).

Note. In the caseLi ∈ C[∂1, . . . , ∂n], taking the greatest common divisor of all of these maximal minor determinants
is equivalent to calculating the polynomial resultant [15]; while for ODOs with variable coefficients the definition
reproduces the differential resultant used to construct the spectral curve [19,20]. The definition of the differential
resultant of the operators Li given in [5] is, in our terminology, a particular partial µ-shifted differential resultant
of the operators Li with all µi = 0.

As in the polynomial case, an important observation is the fact that the partial resultants can be achieved as linear
combinations of the original operators.



74 A. Kasman, E. Previato / Physica D 152–153 (2001) 66–77

Lemma 3.1. Any partial µ-shifted differential resultant of the operators L1, . . . , Ln+1 can be written as

n+1∑
i=1

Di ◦ (Li − µi) (2)

for some PDOs Di with coefficients depending on µj (1 ≤ j ≤ n+ 1) and xk (1 ≤ k ≤ n).

Proof. Let j be the integer 1 ≤ j ≤ ( n+N
n ), such that ωNj = 1 is the differential operator of order zero in the

vectorΩN . Construct the matrixM of size ( n+N
n )× ( N + n

n ), which is the identity matrix except for the fact that

the j th column is replaced by the vector ΩN . Note that detM = 1.
Let R̃ be a maximal square minor of the matrixRµ(L1, . . . , Ln+1). Note that the elements in the j th column of the

matrix R̃ ·M are all monic monomial differential operators composed with the operators Li −µi . Then, expanding
down this column while taking determinants, one finds exactly something of the form (2) with the coefficients of
Di coming from the other minor determinants of R̃.

On the other hand, it is an elementary fact of linear algebra that det R̃ = det R̃ ·M and so (2) must actually be
equal to the order zero operator which is the partial µ-shifted differential resultant of the operators Li . �

Now, suppose that ψ(x1, . . . , xn) satisfies each of the eigenvalue equations

Liψ(x1, . . . , xn) = µiψ(x1, . . . , xn), 1 ≤ i ≤ n+ 1.

Applying any linear combination of the operators Li − µi to this gives zero, but we have by Lemma 3.1 that
multiplying by the partial resultant, a function, is equivalent to applying such a combination. Then, we have the
following corollary (a well-known result appearing also in [5]).

Corollary 3.1. If the operators Li have a common eigenfunction with eigenvalues µi then each partial µ-shifted
resultant vanishes.

3.2. The commutative case

As in the one-dimensional case, we will here show that the partial resultants provide polynomial equations satisfied
by the operators Li in the case that they mutually commute. The remainder of the section will then be comprised of
examples and counter examples of what we would hope to have as a consequence.

Now suppose that the operators Li (1 ≤ i ≤ n + 1) mutually commute. By definition, any partial µ-shifted
differential resultant of these operators is a polynomial in the variables µi with coefficients possibly depending on
the variables xj . As a consequence of Lemma 3.1 we then find that the operators Li satisfy this polynomial.

Theorem 3.1. Let p(µ1, . . . , µn+1) be any µ-shifted differential resultant of the mutually commuting operators
Li , then

p(L1, . . . , Ln+1) = 0.

Proof. Only commutativity of the µi’s with the Lj ’s is required to rewrite p(µ1, . . . , µn+1) in the form (2). So,
since [Li, Lj ] = 0 we can write p(L1, . . . , Ln+1) by substituting Li for µi in (2). This, however, is clearly zero
since every term has a factor of Li − µi for some i. �
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In the one-dimensional case, we can moreover say that the µ-shifted differential resultant is a polynomial in µ1

andµ2 with constant coefficients or a multiple of such a polynomial by a function of x1. Here, the results proved thus
far leave open the possibility that the resultants will only produce polynomial equations satisfied by the operators
with coefficients depending on the variables xj . We were not able to produce any such examples or exclude the
possibility.

3.3. The zero possibility

As stated in the introduction, given two commuting ODOs L1 and L2 the determinant of Rµ(L1, L2) (which
happens to always be square in the case n = 1) is a non-zero polynomial in µ1 and µ2 which is satisfied by the
operators. Here we will see that the differential resultant does not always give such useful information in the higher
dimensional case. Consider the case n = 2 and

L1 = ∂2
1 − ∂2

2 − 1, L2 = ∂1 ◦ L1, L3 = ∂2 ◦ L1.

Since these operators have constant coefficients, we can use Macaulay’s definition of resultant as the greatest
common divisor of all the partial resultants, and call that the differential resultant. Note that the operators satisfy
the equation L2

2 − L2
3 − L1 − L6

1 = 0 and so one might hope, given Theorem 3.1, that the differential resultant of
these operators is µ2

2 − µ2
3 − µ1 − µ6

1 (or at least is a non-zero multiple of this).

Lemma 3.2. The differential resultant of the operators Li is the zero polynomial in the variables µi(1 ≤ i ≤ 3).

Proof. One could, of course, merely compute the resultant according to the definition. However, there is a more
direct and informative way to observe this fact. Since these operators are constant coefficient, the problem reduces
to a problem of polynomial resultants. In particular, the resultant is the same as the resultant of the homogeneous
polynomials

p1(x1, x2, x3)= x2
1 − x2

2 − (µ1 + 1)x2
3 , p2(x1, x2, x3) = x3

1 − x1x
2
2 − x1x

2
3 − µ2x

3
3 ,

p3(x1, x2, x3)= x2
1x2 − x3

2 − x2x
2
3 − µ3x

3
3 .

It is well known [15] that this resultant will be zero if these polynomials have a common zero in projective space.
Although it is true that no “finite” point (with x3 �= 0) is a common solution to these polynomials for all values ofµi ,
there are solutions at infinity. In particular, note that the point (1,−1, 0) satisfies all three polynomials regardless
of the values of µi . �

It is interesting to note the geometry behind this situation. This problem of having a zero (differential) resultant
never arises in the one-dimensional case essentially because only one point is being added at infinity in the (x1 : x2)-
line and that point is never a solution of the homogeneous polynomial. Whereas, in higher dimension, there is “room”
at infinity for many solutions. Note that infinity, or x3 = 0, is precisely where the condition becomes independent
of the parameters µi .

The same problem can also occur in a non-constant case, and so not simply an example of a polynomial resultant.
In particular, the resultants of any three operators from the ring R(K) described in Section 2.3.2 will be zero
regardless of the values of the variablesµi . The mundane explanation of this fact here is merely that theN th powers
of ∂1 and ∂2 never appear in ωN−li

j ◦ (Li −µi) and so there are columns of the resultant matrix with all zero entries.
Recently, there have been significant advances in the theory of sparse resultants for polynomials which address

these problems in the polynomial case (cf. [7], Chapter 7). If differential resultants prove to be useful in the case
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of commuting differential operators (as the next example indicates), then there is good reason for investigating a
theory of sparse resultants in the differential case.

3.4. Positive results

A more encouraging example is given by the operators

L1 = ∂2
1 − ∂2

2 , L2 = x2∂1 + x1∂2, L3 = L1 ◦ L2 − γL1, γ ∈ C.
Given that [L1, L2] = 0, as is easily checked, it is clear that L3 also commutes with L1 and L2 and that the three
together satisfy a polynomial equation p(L1, L2, L3) = 0 with

p(µ1, µ2, µ3) = µ3 − µ1µ2 + γµ1.

Here, we compute a particular quotient of minorsD/A, whereD is a partial resultant and A turns out to depend on
the x variables alone.D and A are the minor determinants specified in [15], where it is proved thatD/A computes
the greatest common divisor of the maximal minors. In our case, D/A = p3(µ1, µ2, µ3). This is very nearly what
we would want, although there is presently no theory to explain the exponent “3” which arises.

It is intriguing that the result is independent of the variables x1 and x2 in this case. In the one-dimensional case,
the resultant of two monic differential operators is independent of x if and only if the operators commute. Here, the
situation involves one operator, L1, that has constant coefficients and others that do not, which cannot happen in
the one-dimensional case.
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