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Spectral Parameter
We often consider families of eigenfunctions for Lax operators for which the
eigenvalue is depends upon an extra parameter. For example

L = ∂2
x −

2

x2
ψ(x, z) =

(
1 − 1

xz

)
exz Lψ = z2ψ. (∗)

Bispectrality
In some cases, the same eigenfunction satisfies a pair of eigenvalue equations
with the roles of spatial and spectral parameters switched.
Definition: (Lx, Λz,ψ(x, z)) is a bispectral triple if

Lψ(x, z) = p(z)ψ(x, z) and Λψ(x, z) = π(x)ψ(x, z).

Example: L = ∂2, Λ = z∂z, ψ = zx: Lψ = (ln z)2ψ Λψ = xψ
Example: Example (∗) above is trivially bispectral since ψ(x, z) = ψ(z, x).
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Bispectrality: Schrödinger Case
Grünbaum originally motivated by signal processing.  
With Duistermaat (1986) answered the question: What if 
L=∂2-V and Λ is an ODO?

This is interesting because it shows that the question is not 
trivial.  E.g. the potential must be rational function.

More interesting: can be summarized by saying the potential 
must be a rational KdV solution!  (Dynamics or coincidence?)



Bispectrality: Rank 1 Case
G. Wilson (1993) completely characterized the set of all 
bispectral triples (L,Λ,Ψ(x,z)) where L commutes with 
other odos of relatively prime order.  (Answer: iff 
spectral curve is rational with only cuspidal 
singularities.)

Wilson made use of the known correspondence 
between such operators with solutions to the KP 
equation.

Turns out that Λ commutes with relatively prime order 
too, so we have Ψ(x,z)➠Ψ(z,x) (bispectral involution)
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What is Classical Duality?

What is a particle system?

Consider the positions xi and momenta yi of n particles as functions of time t.
The Hamiltonian functionH(x1, . . . , xn, y1, . . . , yn) determines their dynamics

according to

∂xi

∂t
=

∂H

∂yi

∂yi

∂t
= −∂H

∂xi
.

What is integrability?

Only for rare choices ofH are there explicit xi(t) and yi(t). In those cases, there
is a function (“symplectic map”) F : (xi, yi) → (Xi, Yi) such that Ẋi = 0 and Ẏi
are constant.

In essence, this F−1 takes simple “linear” dynamics and twists it into a
complicated looking rule.

Duality:

Integrable particle systems have a natural “duality”: pair the system with linearizing

map F with the one that has F−1!
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are constant.

In essence, this F−1 takes simple “linear” dynamics and twists it into a
complicated looking rule.

Duality:

Integrable particle systems have a natural “duality”: pair the system with linearizing

map F with the one that has F−1!

LINEARIZING MAP L

“CARTOON OF DUALITY”



colloq– 4

What is Classical Duality?

What is a particle system?

Consider the positions xi and momenta yi of n particles as functions of time t.
The Hamiltonian functionH(x1, . . . , xn, y1, . . . , yn) determines their dynamics

according to

∂xi

∂t
=

∂H

∂yi

∂yi

∂t
= −∂H

∂xi
.

What is integrability?

Only for rare choices ofH are there explicit xi(t) and yi(t). In those cases, there
is a function (“symplectic map”) F : (xi, yi) → (Xi, Yi) such that Ẋi = 0 and Ẏi
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are constant.

In essence, this F−1 takes simple “linear” dynamics and twists it into a
complicated looking rule.

Duality:

Integrable particle systems have a natural “duality”: pair the system with linearizing

map F with the one that has F−1!

LINEARIZING MAP L

LINEARIZING MAP L-1

“CARTOON OF DUALITY”



In the early 1970’s, F. Calogero showed that the Hamiltonians

are integrable.  This system is known to govern pole dynamics for 
soliton equations. Its quantum analogue shows extreme exclusion 
statistics.

Interestingly, J. Moser showed that their linearizing map is an 
involution.  This system is self-dual!

(Non-self dual example: Ruijsenaars-Schneider is dual to 
hyperbolic Calogero-Moser.)

colloq– 5

Example: Self-Duality of Calogero Systems

For any k the Hamiltonian

Hk = trMk Mij = yiδij +
1 − δij

xi − xj

is integrable and self-dual . (The linearizing map is an involution.)

Example: Calogero System
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My 1995 CMP Paper
Consider the two involutions I have mentioned so far.

Krichever correspondence between Calogero particles 
and rational KP solutions in 1978: motion of poles of 
rational solns (no mention of bispectrality or duality).

I (unjustifiably) felt clever when I showed that this 
diagram commutes:

Calogero State Wilson’s Ψ(x,z)Krichever

Calogero State Wilson’s Ψ(z,x)Krichever

Linearization

B
isp
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Abstract: Rational and soliton solutions of the KP hierarchy in the subgrassmannian

Gr\ are studied within the context of finite dimensional dual grassmannians. In the

rational case, properties of the tau function, τ, which are equivalent to bispectrality

of the associated wave function, ψ, are identified. In particular, it is shown that

there exists a bound on the degree of all time variables in τ if and only if ψ is a

rank one bispectral wave function. The action of the bispectral involution, β, in the

generic rational case is determined explicitly in terms of dual grassmannian para�

meters. Using the correspondence between rational solutions and particle systems,

it is demonstrated that β is a linearizing map of the Calogero�Moser particle

system and is essentially the map σ introduced by Airault, McKean and Moser in

1977 [2].

1. Introduction

Among the surprises in the history of rational solutions of the KP hierarchy (and

the PDE's which make it up) are the existence of rational initial conditions to a

non�linear evolution equation which remain rational for all time [1, 2], that these so�

lutions are related to completely integrable systems of particles [2, 6, 7], and that a

large class of wave functions which have been found to have the bispectral property

turn out to be associated with potentials that are rational KP solutions [3, 16, 17].

Within the grassmannian which is used to study the KP hierarchy, the rational

solutions, along with the 7V�soliton solutions, reside in the subgrassmannian Gr\
[13]. This paper develops a general framework of finite dimensional grassmannians

for studying the KP solutions in Gr\ and then applies this to the bispectral ratio�

nal solutions. New results include information about the geometry of KP orbits in

Gr\ and identification of properties equivalent to bispectrality. In addition, an

explicit description of the bispectral involution in terms of dual grassmannian

coordinates leads to the conclusion that it is, in fact, essentially the linearizing

map σ [2].

Research supported by NSA Grant MDA904�92�H�3032

My 1995 CMP Paper
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This was the first time in the literature that bispectrality had a role 
in the dynamics of classical particles.  
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My 1995 CMP Paper

This was the first time in the literature that bispectrality had a role 
in the dynamics of classical particles.  

Wilson later told me that he had the idea first.  Had not published 
because did not like his proof...“almost everywhere” + continuity.  
(Mine had the same flaw.)
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This was the first time in the literature that bispectrality had a role 
in the dynamics of classical particles.  

Wilson later told me that he had the idea first.  Had not published 
because did not like his proof...“almost everywhere” + continuity.  
(Mine had the same flaw.)

In 1998, he gave up and published.  Even with his “infinitesimal 
hole”, it was beautiful.  My paper was first, but his was better.
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My 1995 CMP Paper

This was the first time in the literature that bispectrality had a role 
in the dynamics of classical particles.  

Wilson later told me that he had the idea first.  Had not published 
because did not like his proof...“almost everywhere” + continuity.  
(Mine had the same flaw.)

In 1998, he gave up and published.  Even with his “infinitesimal 
hole”, it was beautiful.  My paper was first, but his was better.

Contained an important technique: rank one operator identities.  
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In joint paper with Emil Horozov (1998) used 
bispectrality/duality correspondence to produce new 

dual quantum Hamiltonian pairs from any given example.

Quantum
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r-dim’l space

colloq– 6

Particle Systems...with a “spin”

In addition to position and momentum, the interaction between each pair of

particles i and j now depends on the number sij = αi · βj where αi and βj are

r-vectors. (We assume sii = sjj.)

Note thatR = (sij) is a matrix of rank r. (In hindsight, the “rank one conditions”
from many of my previous papers was a “spinless” assumption.)

A NEW “SPIN” ON PARTICLE DYNAMICS
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Spin Calogero

Let

Xij = xiδij Zij = yiδij + (1 − δij)
sij

xi − xj
.

The eigenvalues dynamics of X + ktZk−1 are governed by Hk = trZk.

Note that the rank r condition “[X, Z] − I = R” holds.
More generally,

sCMn
r = {(X, Z,A, B) | X,Z ∈ Mn×n, A, B$ ∈ Mr×n, [X, Z]−I = BA %= 0}

is the state space of the spin Calogero system (including particle “collisions”).
The linearizing map is the involution

(X,Z, A, B) &→ (Z$, X$, B$, A$).

All of that is old news. What we need to do now is show that there is a natural way
to associate a bispectral matrix KP solution to each point of sCMn

r (generalizing
the known r = 1 case), and that the linearizing map corresponds to the bispectral
involution.
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Bispectrality for Matrices...with a “twist”
Not much has been done with bispectral matrix odos since Zubelli (1989).
Seems unlikely that there are so many “unnoticed” bispectral matrix operators.

His “bispectral problem” was in the form

Lψ =
∑

i=0

Mi(x)
∂i

∂xi
ψ(x, z) = p(z)ψ(x, z)

Λψ
∑

i=0

M̂i(z)
∂i

∂zi
ψ(x, z) = π(x)ψ(x, z).

This turns out not to be terribly rich. As we’ll see, the generalization of Wilson’s
result requires us to look at

ΛRψ
∑

i=0

(
∂i

∂zi
ψ(x, z)

)
M̂i(z) = π(x)ψ(x, z).

=

=
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Result 1: Analogue of Krichever Map

Definition: To (X,Z, A, B) associate the r × r matrix odo (x = t1)

W = det(∂I − Z)I + A(X −
∑

itiZ
i−1)−1 adj(Z − ∂I)B.

Theorem: L = W ◦ ∂ ◦ W−1 is a solution to the KP hierarchy.

Key Steps of Proof:

• Using matrix analysis and the rank r condition, we show that the kernel of W
can be written nicely in terms of the residues of e

∑
tiz

i
/ det(zI − Z) at the

eigenvalues of Z.

• We then differentiate Wφ = 0 wrt ti and derive the "Lax equation"

L̇ = [L, (Li)+]

from it using differential algebra.

Remark: Wilson’s r = 1 proof was similar, but was only handled Z with distinct

eigenvalues. This proof “fills the hole”!
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Spin Calogero...and hence 
so are the pole dynamics 

of the KP solution.
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Result 2: Bispectrality

Definition: For each choice of (X,Z, A, B) and L = W ◦ ∂ ◦W−1 as before

we define L = p(L) where p(z) = zk det(zI − Z)2 (k ≥ 0).
Theorem (Eigenfunction) : L is an ordinary differential operator satisfying

Lψ = p(z)ψ for ψ(x, z) = exz
(
I + A(xI − X)−1(zI − Z)−1B

)
.

Since this works for k = 0 and k = 1, we have commuting operators of relatively
prime order.

Definition: Of course, we could do the same for (Z$, X$, B$, A$) and get a
different differential operator L# satisfying

L#ψ#(x, z) = π(z)ψ#(x, z).

Theorem (Bispectral Involution): We use the simple fact that

ψ(x, z) =
(
ψ#(z, x))

)$

to conclude that Λ =
(
L#|x→z

)$
satisfies

ΛRψ(x, z) = π(x)ψ(x, z).
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a new kind of bispectrality, reaffirming that “bispectrality=duality”.

Having found this “coincidence” separately in numerous settings, I 
am inclined to think there must be some general theorem lurking 
behind the scenes.

Can we prove that dual Hamiltonians quantize to bispectral 
operators?  (Fock-Gorsky-Nekrasov-Rubtsov)

Can we prove that bispectral involutions and action-angle maps for 
dual integrable systems are always the same?

Why does duality look like bispectrality for both quantum and 
classical systems?  (Note: At the quantum level, the Hamiltonians are 
bispectral and classically it is individual states that are!)


