Bispectrality and Duality

Alex Kasman, College of Charleston Joint Mathematics Meeting - Boston 2012

What is bispectrality?

Spectral Parameter

We often consider families of eigenfunctions for Lax operators for which the eigenvalue is depends upon an extra parameter. For example

$$
\begin{equation*}
L=\partial_{x}^{2}-\frac{2}{x^{2}} \quad \psi(x, z)=\left(1-\frac{1}{x z}\right) e^{x z} \quad L \psi=z^{2} \psi \tag{*}
\end{equation*}
$$

Bispectrality

In some cases, the same eigenfunction satisfies a pair of eigenvalue equations with the roles of spatial and spectral parameters switched.
Definition: $\left(L_{x}, \Lambda_{z}, \psi(x, z)\right)$ is a bispectral triple if

$$
L \psi(x, z)=p(z) \psi(x, z) \quad \text { and } \quad \Lambda \psi(x, z)=\pi(x) \psi(x, z)
$$

Example: $L=\partial^{2}, \Lambda=z \partial_{z}, \psi=z^{x}: L \psi=(\ln z)^{2} \psi \quad \Lambda \psi=x \psi$
Example: Example $(*)$ above is trivially bispectral since $\psi(x, z)=\psi(z, x)$.

Bispectrality: Schrödinger Case

Grünbaum originally motivated by signal processing. With Duistermaat (1986) answered the question: What if $L=\partial^{2}-V$ and Λ is an ODO?

Bispectrality: Schrödinger Case

Grünbaum originally motivated by signal processing. With Duistermaat (1986) answered the question: What if $L=\partial^{2}-V$ and Λ is an ODO?

> Theorem 0.1. The potentials V for which $(0.1),(0.2)$ hold (for non-zero ϕ and A of positive order) are $V(x)=\alpha x+\beta, \alpha, \beta \in \mathbb{C}, \alpha \neq 0$ (Airy) or $V(x)=\frac{c}{(x-a)^{2}}+b$, a,b,c $\in \mathbb{C}$ (Bessel) or, modulo a translation in x and adding a constant to V, those which can be obtained from $V=0$ or $V=-\frac{1}{4} \frac{1}{x^{2}}$ by finitely many rational Darboux transformationss

Bispectrality: Schrödinger Case

Grünbaum originally motivated by signal processing. With Duistermaat (1986) answered the question: What if $L=\partial^{2}-V$ and Λ is an ODO?

$$
\begin{aligned}
& \text { Theorem 0.1. The potentials } V \text { for which }(0.1) \text {, (} 0.2 \text {) hold (for non-zero } \phi \text { and } A \text { of } \\
& \text { positive order) are } V(x)=\alpha x+\beta, \alpha, \beta \in \mathbb{C}, \alpha \neq 0 \text { (Airy) or } V(x)=\frac{c}{(x-a)^{2}}+b \text {, } \\
& a, b, c \in \mathbb{C} \text { (Bessel) or, modulo a translation in } x \text { and adding a constant to } V \text {, those } \\
& \text { which can be obtained from } V=0 \text { or } V=-\frac{1}{4} \frac{1}{x^{2}} \text { by finitely many rational Darboux } \\
& \text { transformations }
\end{aligned}
$$

* This is interesting because it shows that the question is not trivial. E.g. the potential must be rational function.

Bispectrality: Schrödinger Case

Grünbaum originally motivated by signal processing. With Duistermaat (1986) answered the question: What if $L=\partial^{2}-V$ and Λ is an ODO?

$$
\begin{aligned}
& \text { Theorem 0.1. I he potentials } V \text { for which }(0.1) \text {, (} 0.2 \text {) hold (for non-zero } \phi \text { and } A \text { of } \\
& \text { positive order) are } V(x)=\alpha x+\beta, \alpha, \beta \in \mathbb{C}, \alpha \neq 0 \text { (Airy) or } V(x)=\frac{c}{(x-a)^{2}}+b \text {, } \\
& a, b, c \in \mathbb{C} \text { (Bessel) or, modulo a translation in } x \text { and adding a constant to } V \text {, those } \\
& \text { which can be obtained from } V=0 \text { or } V=-\frac{1}{4} \frac{1}{x^{2}} \text { by finitely many rational Darboux } \\
& \text { transformationss }
\end{aligned}
$$

* This is interesting because it shows that the question is not trivial. E.g. the potential must be rational function.
* More interesting: can be summarized by saying the potential must be a rational KdV solution! (Dynamics or coincidence?)

Bispectrality: Rank 1 Case

* G. Wilson (1993) completely characterized the set of all bispectral triples ($L, \wedge, \Psi(x, z)$) where L commutes with other odos of relatively prime order. (Answer: iff spectral curve is rational with only cuspidal singularities.)
* Wilson made use of the known correspondence between such operators with solutions to the KP equation.
* Turns out that \wedge commutes with relatively prime order too, so we have $\Psi(x, z)= \pm \Psi(z, x)$ (bispectral involution)

What is Classical Duality?

What is a particle system?

Consider the positions x_{i} and momenta y_{i} of n particles as functions of time t.
The Hamiltonian function $H\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ determines their dynamics according to

$$
\frac{\partial x_{i}}{\partial t}=\frac{\partial H}{\partial y_{i}} \quad \frac{\partial y_{i}}{\partial t}=-\frac{\partial H}{\partial x_{i}} .
$$

What is integrability?

Only for rare choices of H are there explicit $x_{i}(t)$ and $y_{i}(t)$. In those cases, there is a function ("symplectic map") $F:\left(x_{i}, y_{i}\right) \rightarrow\left(X_{i}, Y_{i}\right)$ such that $\dot{X}_{i}=0$ and \dot{Y}_{i} are constant.

In essence, this F^{-1} takes simple "linear" dynamics and twists it into a complicated looking rule.

Duality:

Integrable particle systems have a natural "duality": pair the system with linearizing map F with the one that has F^{-1} !

Example: Calogero System

In the early 1970's, F. Calogero showed that the Hamiltonians

$$
H_{k}=\operatorname{tr} M^{k} \quad M_{i j}=y_{i} \delta_{i j}+\frac{1-\delta_{i j}}{x_{i}-x_{j}}
$$

are integrable. This system is known to govern pole dynamics for soliton equations. Its quantum analogue shows extreme exclusion statistics.

Interestingly, J. Moser showed that their linearizing map is an involution. This system is self-dual!
(Non-self dual example: Ruijsenaars-Schneider is dual to hyperbolic Calogero-Moser.)

Quantum Duality=Bispectrality

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.
* Examples can be found in the papers of Ruijsenaars, van Diejen, Veselov, etc. (For example, rational Calogero eigenfunction is trivially bispectral.)

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.
* Examples can be found in the papers of Ruijsenaars, van Diejen, Veselov, etc. (For example, rational Calogero eigenfunction is trivially bispectral.)

It is remarkable that the BA function turns out to be symmetric with respect to k and x. For Coxeter configurations this property has been established in [5].

Theorem 2.3. Baker-Akhiezer function $\psi(k, x)$ is symmetric with respect to x and $k: \psi(k, x)=\psi(x, k)$.

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.
* Examples can be found in the papers of Ruijsenaars, van Diejen, Veselov, etc. (For example, rational Calogero eigenfunction is trivially bispectral.)
* Makes intuitive sense (exchange roles of position and momentum), but is there a theorem?

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.
* Examples can be found in the papers of Ruijsenaars, van Diejen, Veselov, etc. (For example, rational Calogero eigenfunction is trivially bispectral.)
* Makes intuitive sense (exchange roles of position and momentum), but is there a theorem?
* But, is there any reason to expect to see bispectrality in classical duality?

Quantum Duality=Bispectrality

* When dual integrable systems are quantized, their Hamiltonians (partial differential or difference operators) together with the wave function form a bispectral triple.
* Examples can be found in the papers of Ruijsenaars, van Diejen, Veselov, etc. (For example, rational Calogero eigenfunction is trivially bispectral.)
* Makes intuitive sense (exchange roles of position and momentum), but is there a theorem?
* But, is there any reason to expect to see bispectrality in classical duality?

Calogero State

Wilson's $\Psi(x, z)$

등 $\stackrel{0}{0}$ 0 0 0 0 0

Calogero State

Wilson's $\Psi(z, x)$

My 1995 CMP Paper

* Consider the two involutions I have mentioned so far.

Calogero State

Wilson's $\Psi(x, z)$

등 0 0 0 0 0 0 0

Calogero State

Wilson's $\Psi(z, x)$

My 1995 CMP Paper

* Consider the two involutions I have mentioned so far.
* Krichever correspondence between Calogero particles and rational KP solutions in 1978: motion of poles of rational solns (no mention of bispectrality or duality).

Calogero State

巨
$\frac{0}{0}$
0
2
0
$\frac{0}{3}$
0
Calogero State
Krichever
Wilson's $\Psi(x, z)$

Wilson's $\Psi(z, x)$

My 1995 CMP Paper

* Consider the two involutions I have mentioned so far.
* Krichever correspondence between Calogero particles and rational KP solutions in 1978: motion of poles of rational solns (no mention of bispectrality or duality).
** I (unjustifiably) felt clever when I showed that this diagram commutes:

Calogero State

5
2
0
$\frac{1}{2}$
0
0
0
0

Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

Alex Kasman ${ }^{1}$

Department of Mathematics, Boston University, Boston, MA 02215, USA
Received: 6 June 1994/in revised form: 21 November 1994

Abstract: Rational and soliton solutions of the KP hierarchy in the subgrassmannian $G r_{1}$ are studied within the context of finite dimensional dual grassmannians. In the rational case, properties of the tau function, τ, which are equivalent to bispectrality of the associated wave function, ψ, are identified. In particular, it is shown that there exists a bound on the degree of all time variables in τ if and only if ψ is a rank one bispectral wave function. The action of the bispectral involution, β, in the generic rational case is determined explicitly in terms of dual grassmannian parameters. Using the correspondence between rational solutions and particle systems, it is demonstrated that β is a linearizing map of the Calogero-Moser particle system and is essentially the map σ introduced by Airault, McKean and Moser in 1977 [2].

1. Introduction

Among the surprises in the history of rational solutions of the KP hierarchy (and the PDE's which make it up) are the existence of rational initial conditions to a non-linear evolution equation which remain rational for all time [1, 2], that these solutions are related to completely integrable systems of particles $[2,6,7]$, and that a large class of wave functions which have been found to have the bispectral property turn out to be associated with potentials that are rational KP solutions [3, 16, 17$]$. Within the grassmannian which is used to study the KP hierarchy, the rational solutions, along with the N-soliton solutions, reside in the subgrassmannian $G r_{1}$ [13]. This paper develops a general framework of finite dimensional grassmannians for studying the KP solutions in $G r_{1}$ and then applies this to the bispectral rational solutions. New results include information about the geometry of KP orbits in $G r_{1}$ and identification of properties equivalent to bispectrality. In addition, an explicit description of the bispectral involution in terms of dual grassmannian coordinates leads to the conclusion that it is, in fact, essentially the linearizing map σ [2].

My 1995 CMP Paper

Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

Alex Kasman ${ }^{1}$

Department of Mathematics, Boston University, Boston, MA 02215, USA
Received: 6 June 1994/in revised form: 21 November 1994
类 This was the first time in the literature that bispectrality had a role in the dynamics of classical particles.

解 rank one bispectral wave function. The action of the bispectral involution, β, in the generic rational case is determined explicitly in terms of dual grassmannian parameters. Using the correspondence between rational solutions and particle systems, it is demonstrated that β is a linearizing map of the Calogero-Moser particle system and is essentially the map σ introduced by Airault, McKean and Moser in 1977 [2].

1. Introduction

Among the surprises in the history of rational solutions of the KP hierarchy (and the PDE's which make it up) are the existence of rational initial conditions to a non-linear evolution equation which remain rational for all time [1, 2], that these solutions are related to completely integrable systems of particles [$2,6,7]$, and that a large class of wave functions which have been found to have the bispectral property turn out to be associated with potentials that are rational KP solutions [3, 16, 17]. Within the grassmannian which is used to study the KP hierarchy, the rational solutions, along with the N-soliton solutions, reside in the subgrassmannian $G r_{1}$ [13]. This paper develops a general framework of finite dimensional grassmannians for studying the KP solutions in $G r_{1}$ and then applies this to the bispectral rational solutions. New results include information about the geometry of KP orbits in $G r_{1}$ and identification of properties equivalent to bispectrality. In addition, an explicit description of the bispectral involution in terms of dual grassmannian coordinates leads to the conclusion that it is, in fact, essentially the linearizing map σ [2].

My 1995 CMP Paper

Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

Alex Kasman

Department of Mathematics, Boston University, Boston, MA 02215, USA
Received: 6 June 1994/in revised form: 21 November 1994

* This was the first time in the literature that bispectrality had a role

ank one bispectral wave function. The action of the bispectral involution, β in the
* Wilson later told me that he had the idea first Had not published because did not like hils proof..."almost everywhere" + continuity. (Mine had the same flaw:)

[^0]
My 1995 CMP Paper

Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

Alex Kasman ${ }^{1}$
Department of Mathematics, Boston University, Boston, MA 02215, USA
Received: 6 June 1994/in revised form: 21 November 1994
类 This was the first time in the literature that bispectrality had a role in the dynamics of classical particles.
rank one bispectral wave function. The action of the bispectral involution, β, in the

* Wilson later told me that he had the dea first. Had not published because did not like 'his proof..."almost everywhere" + continuity. (Mine had the same flaw:)
on-linear polution
* In 1998, he gave up and published. Even with his "infinitesimal hole", it was beautifulim My paper was first but his was better.

[^1]
My 1995 CMP Paper

Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

Alex Kasman ${ }^{1}$
Department of Mathematics, Boston University, Boston, MA 02215, USA
Received: 6 June 1994/in revised form: 21 November 1994
类 This was the first time in the literature that bispectrality had a role in the dynamics of classical particles.
rank one bispectral wave function. The action of the bispectral involution, β, in the

* Wilson later told me that he had the dea first. Had not published because did not like 'his proof..."almost everywhere" + continuity. (Mine had the same flaw:)
* In 1998, he gave up and published. Even with his "infinitesimal hole", it was beautifull My paper was first but his was better.
* Contained an important technique: rank one operator identities.

Bispectrality=Duality Program Overview

Quantum

Classical

Bispectrality=Duality Program Overview

Bispectrality=Duality Program Overview

Quantum

Classical

Bispectrality=Duality Program Overview

Classical

Calogero Self-duality = bispectrality of scalar ODOs which commute with others of relatively prime order (Kasman '95 / Wilson '98)

Bispectrality=Duality Program Overview

Bispectrality=Duality Program Overview

Quantum

Classical

Calogero Self-duality = bispectrality of scalar ODOs which commute with others of relatively prime order (Kasman '95 / Wilson '98)

Not relatively prime
^ not ODO
Matrix ODOs

Produced rank $r>0$ bispectral rings, poles motion under KP flow is linearized by bispectral involution, and that quantum Hamiltonians are bispectral (Kasman-Rothstein '97-'01).

Bispectrality=Duality Program Overview

Classical

Calogero Self-duality = bispectrality of scalar ODOs which commute with others of relatively prime order (Kasman '95 / Wilson '98)

Not relatively prime
\wedge not ODO
Matrix ODOs

I was planning ahead: Bispectrality for Solitons (translation operators) in 1998, Rank One Formulas for Solitons (w/Gekhtman) in 2001...working towards duality

Bispectrality=Duality Program Overview

Bispectrality=Duality Program Overview

Classical

Calogero Self-duality = bispectrality of scalar ODOs which commute with others of relatively prime order (Kasman '95 / Wilson '98)

Not relatively prime

Old paper of Zubelli suggests that bispectrality and matrices don't mix. So, nobody looked at it much after.

Bispectrality=Duality Program Overview

Classical

Calogero Self-duality = bispectrality of scalar ODOs which commute with others of relatively prime order (Kasman '95 / Wilson '98)

Not relatively prime
^ not ODO
Matrix ODOs

Some details from Mathematical Physics, Analysis and Geometry 12 (2009) 181-200 [Bergvelt-Gekhtman-K].

A NEW "SPIN" ON PARTICLE DYNAMICS

In addition to position and momentum, the interaction between each pair of particles i and j now depends on the number $s_{i j}=\alpha_{i} \cdot \beta_{j}$ where α_{i} and β_{j} are r-vectors. (We assume $s_{i i}=s_{j j}$.)

Note that $R=\left(s_{i j}\right)$ is a matrix of rank r. (In hindsight, the "rank one conditions" from many of my previous papers was a "spinless" assumption.)

Spin Calogero

Let

$$
X_{i j}=x_{i} \delta_{i j} \quad Z_{i j}=y_{i} \delta_{i j}+\left(1-\delta_{i j}\right) \frac{s_{i j}}{x_{i}-x_{j}}
$$

The eigenvalues dynamics of $X+k t Z^{k-1}$ are governed by $H_{k}=\operatorname{tr} Z^{k}$.
Note that the rank r condition " $[X, Z]-I=R$ " holds.
More generally,

$$
\mathrm{sCM}_{r}^{n}=\left\{(X, Z, A, B) \mid X, Z \in M_{n \times n}, A, B^{\top} \in M_{r \times n},[X, Z]-I=B A \neq 0\right\}
$$

is the state space of the spin Calogero system (including particle "collisions").
The linearizing map is the involution

$$
(X, Z, A, B) \mapsto\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)
$$

All of that is old news. What we need to do now is show that there is a natural way to associate a bispectral matrix KP solution to each point of sCM_{r}^{n} (generalizing the known $r=1$ case), and that the linearizing map corresponds to the bispectral involution.

Spin Calogero

Let

$$
X_{i j}=x_{i} \delta_{i j} \quad Z_{i j}=y_{i} \delta_{i j}+\left(1-\delta_{i j}\right) \frac{s_{i j}}{x_{i}-x_{j}} .
$$

The eigenvalues dynamics of $X+k t Z^{k-1}$ are governed by $H_{k}=\operatorname{tr} Z^{k}$.
Note that the rank r condition " $[X, Z]-I=R$ " holds.
More generally,

$$
\operatorname{sCM}_{r}^{n}=\left\{(X, Z, A, B) \mid X, Z \in M_{n \times n}, A, B^{\top} \in M_{r \times n},[X, Z]-I=B A \neq 0\right\}
$$

is the state space of the spin Calogero system (including particle "collisions").
The linearizing map is the involution

$$
(X, Z, A, B) \mapsto\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)
$$

All of that is old news. What we need to do now is show that there is a natural way to associate a bispectral matrix KP solution to each point of sCM_{r}^{n} (generalizing the known $r=1$ case), and that the linearizing map corresponds to the bispectral involution.

Spin Calogero

Let

$$
X_{i j}=x_{i} \delta_{i j} \quad Z_{i j}=y_{i} \delta_{i j}+\left(1-\delta_{i j}\right) \frac{s_{i j}}{x_{i}-x_{j}}
$$

The eigenvalues dynamics of $X+k t Z^{k-1}$ are governed by $H_{k}=\operatorname{tr} Z^{k}$.
Note that the rank r condition " $[X, Z]-I=R$ " holds.
More-generally,
$\mathrm{sCM}_{r}^{n}=\left\{(X, Z, A, B) \mid X, Z \in M_{n \times n}, A, B^{\top} \in M_{r \times n},[X, Z]-I=B A \neq 0\right\}$
is the state space of the spin Calogero system (including particle "collisions").
The linearizing map is the involution

$$
(X, Z, A, B) \mapsto\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)
$$

All of that is old news. What we need to do now is show that there is a natural way to associate a bispectral matrix KP solution to each point of sCM_{r}^{n} (generalizing the known $r=1$ case), and that the linearizing map corresponds to the bispectral involution.

Spin Calogero

Let

$$
X_{i j}=x_{i} \delta_{i j} \quad Z_{i j}=y_{i} \delta_{i j}+\left(1-\delta_{i j}\right) \frac{s_{i j}}{x_{i}-x_{j}}
$$

The eigenvalues dynamics of $X+k t Z^{k-1}$ are governed by $H_{k}=\operatorname{tr} Z^{k}$.
Note that the rank r condition " $[X, Z]-I=R$ " holds.
More generally,

$$
\operatorname{sCM}_{r}^{n}=\left\{(X, Z, A, B) \mid X, Z \in M_{n \times n}, A, B^{\top} \in M_{r \times n},[X, Z]-I=B A \neq 0\right\}
$$

is the state space of the spin Calogero system (including particle "collisions").
The linearizing map is the involution

$$
(X, Z, A, B) \mapsto\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)
$$

All of that is old news. What we need to do now is show that there is a natural way to associate a bispectral matrix KP solution to each point of sCM_{r}^{n} (generalizing the known $r=1$ case), and that the linearizing map corresponds to the bispectral involution.

Spin Calogero

Let

$$
X_{i j}=x_{i} \delta_{i j} \quad Z_{i j}=y_{i} \delta_{i j}+\left(1-\delta_{i j}\right) \frac{s_{i j}}{x_{i}-x_{j}}
$$

The eigenvalues dynamics of $X+k t Z^{k-1}$ are governed by $H_{k}=\operatorname{tr} Z^{k}$.
Note that the rank r condition " $[X, Z]-I=R$ " holds.
More generally,

$$
\mathrm{sCM}_{r}^{n}=\left\{(X, Z, A, B) \mid X, Z \in M_{n \times n}, A, B^{\top} \in M_{r \times n},[X, Z]-I=B A \neq 0\right\}
$$

is the state space of the spin Calogero system (including particle "collisions").
The linearizing map is the involution

$$
(X, Z, A, B) \mapsto\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)
$$

All of that is old news. What we need to do now is show that there is a natural way to associate a bispectral matrix KP solution to each point of sCM_{r}^{n} (generalizing the known $r=1$ case), and that the linearizing map corresponds to the bispectral involution.

Bispectrality for Matrices...with a "twist"

\Rightarrow Not much has been done with bispectral matrix odos since Zubelli (1989). Seems unlikely that there are so many "unnoticed" bispectral matrix operators.
> His "bispectral problem" was in the form

$$
L \psi=\sum_{i=0} M_{i}(x) \frac{\partial^{i}}{\partial x^{i}} \psi(x, z)=p(z) \psi(x, z)
$$

$$
\Lambda \psi=\sum_{i=0} \hat{M}_{i}(z) \frac{\partial^{i}}{\partial z^{i}} \psi(x, z)=\pi(x) \psi(x, z)
$$

> This turns out not to be terribly rich. As we'll see, the generalization of Wilson's result requires us to look at

$$
\Lambda_{R} \psi=\sum_{i=0}\left(\frac{\partial^{i}}{\partial z^{i}} \psi(x, z)\right) \hat{M}_{i}(z)=\pi(x) \psi(x, z)
$$

Bispectrality for Matrices...with a "twist"

\Rightarrow Not much has been done with bispectral matrix odos since Zubelli (1989). Seems unlikely that there are so many "unnoticed" bispectral matrix operators.
> His "bispectral problem" was in the form

$$
L \psi=\sum_{i=0} M_{i}(x) \frac{\partial^{i}}{\partial x^{i}} \psi(x, z)=p(z) \psi(x, z)
$$

$$
\Lambda \psi=\sum_{i=0} \hat{M}_{i}(z) \frac{\partial^{i}}{\partial z^{i}} \psi(x, z)=\pi(x) \psi(x, z)
$$

> This turns out not to be terribly rich. As we'll see, the generalization of Wilson's result requires us to look at

$$
\Lambda_{R} \psi=\sum_{i=0}\left(\frac{\partial^{i}}{\partial z^{i}} \psi(x, z)\right) \hat{M}_{i}(z)=\pi(x) \psi(x, z)
$$

Result 1: Analogue of Krichever Map

Definition: $\mathrm{To}(X, Z, A, B)$ associate the $r \times r$ matrix odo $\left(x=t_{1}\right)$

$$
W=\operatorname{det}(\partial I-Z) I+A\left(X-\sum i t_{i} Z^{i-1}\right)^{-1} a d j(Z-\partial I) B .
$$

Theorem: $\mathcal{L}=W \circ \partial \circ W^{-1}$ is a solution to the KP hierarchy.

Key Steps of Proof:

- Using matrix analysis and the rank r condition, we show that the kernel of W can be written nicely in terms of the residues of $e^{\sum t_{i} z^{i}} / \operatorname{det}(z I-Z)$ at the eigenvalues of Z.
- We then differentiate $W \phi=0 \mathrm{wrt} t_{i}$ and derive the "Lax equation"

$$
\dot{\mathcal{L}}=\left[\mathcal{L},\left(\mathcal{L}^{i}\right)_{+}\right]
$$

from it using differential algebra.

Remark: Wilson's $r=1$ proof was similar, but was only handled Z with distinct eigenvalues. This proof "fills the hole"!

Result 1: Analogue of Krichever Map

Definition: $\mathrm{To}(X, Z, A, B)$ associate the $r \times r$ matrix odo $\left(x=t_{1}\right)$

$$
W=\operatorname{det}(\partial I-Z) I+A\left(X-\sum i t_{i} Z^{i-1}\right)^{-1} \operatorname{adj}(Z-\partial I) B .
$$

Theorem: $\mathcal{L}=W \circ \partial \circ W^{-1}$ is a solutio

Key Steps of Proof:

Note that this is the matrix whose eigenvalue

- Using matrix analysis and the rank r cond dynamics are governed by can be written nicely in terms of the resid Spin Calogero...and hence eigenvalues of Z.
so are the pole dynamics of the KP solution.
- We then differentiate $W \phi=0 \mathrm{wrt} t_{i}$ and de

$$
\dot{\mathcal{L}}=\left[\mathcal{L},\left(\mathcal{L}^{i}\right)_{+}\right]
$$

from it using differential algebra.
Remark: Wilson's $r=1$ proof was similar, but was only handled Z with distinct eigenvalues. This proof "fills the hole"!

Result 1: Analogue of Krichever Map

Definition: $\mathrm{To}(X, Z, A, B)$ associate the $r \times r$ matrix odo $\left(x=t_{1}\right)$

$$
W=\operatorname{det}(\partial I-Z) I+A\left(X-\sum i t_{i} Z^{i-1}\right)^{-1} a d j(Z-\partial I) B .
$$

Theorem: $\mathcal{L}=W \circ \partial \circ W^{-1}$ is a solution to the KP hierarchy.

Key Steps of Proof:

- Using matrix analysis and the rank r condition, we show that the kernel of W can be written nicely in terms of the residues of $e^{\sum t_{i} z^{i}} / \operatorname{det}(z I-Z)$ at the eigenvalues of Z.
- We then differentiate $W \phi=0 \mathrm{wrt} t_{i}$ and derive the "Lax equation"

$$
\dot{\mathcal{L}}=\left[\mathcal{L},\left(\mathcal{L}^{i}\right)_{+}\right]
$$

from it using differential algebra.

Remark: Wilson's $r=1$ proof was similar, but was only handled Z with distinct eigenvalues. This proof "fills the hole"!

Result 2: Bispectrality

Definition: For each choice of (X, Z, A, B) and $\mathcal{L}=W \circ \partial \circ W^{-1}$ as before we define $L=p(\mathcal{L})$ where $p(z)=z^{k} \operatorname{det}(z I-Z)^{2}(k \geq 0)$.
Theorem (Eigenfunction) : L is an ordinary differential operator satisfying

$$
L \psi=p(z) \psi \quad \text { for } \quad \psi(x, z)=e^{x z}\left(I+A(x I-X)^{-1}(z I-Z)^{-1} B\right) .
$$

Since this works for $k=0$ and $k=1$, we have commuting operators of relatively prime order.
Definition: Of course, we could do the same for $\left(Z^{\top}, X^{\top}, B^{\top}, A^{\top}\right)$ and get a different differential operator L^{b} satisfying

$$
L^{b} \psi^{b}(x, z)=\pi(z) \psi^{b}(x, z) .
$$

Theorem (Bispectral Involution): We use the simple fact that

$$
\left.\psi(x, z)=\left(\psi^{b}(z, x)\right)\right)^{\top}
$$

to conclude that $\Lambda=\left(\left.L^{b}\right|_{x \rightarrow z}\right)^{\top}$ satisfies

$$
\Lambda_{R} \psi(x, z)=\pi(x) \psi(x, z) .
$$

In Conclusion:

* Starting with the known self-duality of spin Calogero, we discovered a new kind of bispectrality, reaffirming that "bispectrality=duality".

In Conclusion:

* Starting with the known self-duality of spin Calogero, we discovered a new kind of bispectrality, reaffirming that "bispectrality=duality".
* Having found this "coincidence" separately in numerous settings, I am inclined to think there must be some general theorem lurking behind the scenes.

In Conclusion:

* Starting with the known self-duality of spin Calogero, we discovered a new kind of bispectrality, reaffirming that "bispectrality=duality".
* Having found this "coincidence" separately in numerous settings, I am inclined to think there must be some general theorem lurking behind the scenes.
* Can we prove that dual Hamiltonians quantize to bispectral operators? (Fock-Gorsky-Nekrasov-Rubtsov)

In Conclusion:

* Starting with the known self-duality of spin Calogero, we discovered a new kind of bispectrality, reaffirming that "bispectrality=duality".
* Having found this "coincidence" separately in numerous settings, I am inclined to think there must be some general theorem lurking behind the scenes.
* Can we prove that dual Hamiltonians quantize to bispectral operators? (Fock-Gorsky-Nekrasov-Rubtsov)
* Can we prove that bispectral involutions and action-angle maps for dual integrable systems are always the same?

In Conclusion:

* Starting with the known self-duality of spin Calogero, we discovered a new kind of bispectrality, reaffirming that "bispectrality=duality".
* Having found this "coincidence" separately in numerous settings, I am inclined to think there must be some general theorem lurking behind the scenes.
* Can we prove that dual Hamiltonians quantize to bispectral operators? (Fock-Gorsky-Nekrasov-Rubtsov)
* Can we prove that bispectral involutions and action-angle maps for dual integrable systems are always the same?
* Why does duality look like bispectrality for both quantum and classical systems? (Note: At the quantum level, the Hamiltonians are bispectral and classically it is individual states that are!)

[^0]: the PDE's which make it up) are the existence of rational initial conditions to a non-linear evolution equation which remain rational for all time $[1,2]$, that these solutions are related to completely integrable systems of particles $[2,6,7]$, and that a large class of wave functions which have been found to have the bispectral property turn out to be associated with potentials that are rational KP solutions [3, 16, 17].
 Within the grassmannian which is used to study the KP hierarchy, the rational solutions, along with the N-soliton solutions, reside in the subgrassmannian $G r_{1}$
 [13]. This paper develops a general framework of finite dimensional grassmannians for studying the KP solutions in $G r_{1}$ and then applies this to the bispectral rational solutions. New results include information about the geometry of KP orbits in
 $G r_{1}$ and identification of properties equivalent to bispectrality. In addition, an
 explicit description of the bispectral involution in terms of dual grassmannian coordinates leads to the conclusion that it is, in fact, essentially the linearizing map σ [2].

[^1]: nal solutions. New results include information about the geometry of KP orbits in
 explicit description of the bispectral involution in terms of dual grassmannian coordinates leads to the conclusion that it is, in fact, essentially the linearizing map σ [2].

