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Abstract
In this note, we apply canonical quantization to the self-dual particle system
describing the motion of poles to a higher rank solution of the KP hierarchy,
explicitly determining both the quantum Hamiltonian and the wavefunction.
It is verified that the quantum Hamiltonian is trivially bispectral (that is, that
the wavefunction can be taken to be symmetric) as predicted by a widely held
hypothesis of mathematical physics.

PACS numbers: 02.30.Ik, 45.20.Jj, 45.50.-j

1. Introduction

Following Ruijsenaars [14], it has been recognized as convenient and useful to classify
integrable particle systems into dual pairs. Roughly speaking, one system is dual to another
when the linearizing map of one system is the inverse of the linearizing map of the other.
More specifically, a system is said to be self-dual if it is linearized by an involution. (The
Calogero–Moser particle system is the best known self-dual integrable system [1].) Duality
of integrable systems has been the focus of much recent research due to its role in theories
of quantum gravity (see, e.g., [2, 12]). In particular, one observation is that the quantized
version of these systems should demonstrate a symmetry of spatial and spectral parameters in
their wavefunctions [5, 7]. Since this is a special instance of the bispectral property [6], this
conjecture will be referred to here as the bispectral quantization hypothesis (BQH).

Although there is no particular reason to disbelieve the BQH, it is not supported by
a mathematical proof. (In fact, the ambiguities of the procedure known as ‘quantization’
would make it difficult to state the BQH in a verifiable manner.) At present, at least, it is
supported only ‘experimentally’ by the fact that it happens in all the well known systems
(Calogero–Moser, Ruijsenaars–Schneider, Sutherland, etc) and by the fact that it ‘seems like
the appropriate analogue’. It is therefore of interest, when confronted with a new example of
a pair of integrable systems related by classical duality, to determine whether it might provide
a counter-example. The purpose of this paper is to confirm that the quantum Hamiltonian

H̃ =
( n∑
i=1

∂2
i − xi

)
−

( ∑
1�i<j�n

4

(xi − xj )2

)
(1)
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(corresponding to a self-dual classical system first explicitly studied in [13]) does have a
wavefunction with the predicted symmetry. In addition, this result is of interest since it provides
new examples of bispectral commutative rings of partial differential operators containing
Schrödinger operators and demonstrates that the operator H̃ intertwines with the operator
H = ∑n

i=1 ∂
2
i − xi (in contrast to the case n = 1 where H is known not to intertwine with any

other rational operators).

2. Classical particle dynamics

In this section of the paper we will be concerned with the n-particle dynamical system
determined by the Hamiltonian

H =
( n∑
i=1

y2
i − xi

)
−

( ∑
1�i<j�n

4

(xi − xj )2

)

where xi are the particle positions and yi are their momenta. This Hamiltonian bears a clear
resemblance to the Calogero–Moser particle system [1, 8, 11, 15, 16]. In fact, it is similar to
that famous system in several important ways.

Most importantly, we will observe that this system, like the Calogero–Moser, is integrable
and self-dual. To see this, it is convenient to write H in terms of the Calogero–Moser
matrices [10, 16]. That is, consider the set of all pairs of n× n matrices (X,Z) satisfying

rank([X,Z] + I ) = 1. (2)

An element of this set can naturally be associated with a state of the system in which the
particles occupy distinct positions. In that case we consider

X = xiδij Z = yiδij +

√
2(1 − δij )

xi − xj
. (3)

(Note that as compared to the presentation of these matrices in other papers, a factor of
√

2
has been added to the matrix Z off of the diagonal for later convenience.)

It was observed in [13] that, as in the case of Calogero–Moser, the Hamiltonian function
can be written simply in terms of X and Z as follows:

H = Tr(Z2 −X).

Now observe that the map

(X,Z) �→ (X̄, Z̄) = ((Z	)2 −X	, Z	)

is an involution on the space of matrices satisfying the rank one condition (2). More importantly,
note that the corresponding Hamiltonian is

H̄j = tr((Z̄)2 − X̄)j = tr(Xj ) =
∑

x
j

i .

Since the Hamiltonian is independent of the y values, the x values are constant while the y
values change linearly. Since this map is a linearizing involution, we are thus able to conclude
that H is a self-dual integrable system.

Another way in which this system is similar to Calogero–Moser is that both systems
describe the motion of poles in a solution to the KP hierarchy. In particular, as shown in [13], this
Hamiltonian describes the dynamics of poles to a solution determined as an iterated Darboux
transformation of the Airy solution [9]. Unlike Calogero–Moser, however, this solution is not
a rational function of all of the time variables of the KP hierarchy and this solution does not
correspond to a flow on the Jacobian variety of the spectral curve. In fact, the corresponding
KP solution is associated with rank two bundles over the spectral curve, rather than rank one
bundles as in the case of all particle systems for which the BQH has previously been tested.
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2.1. Bispectrality and duality

A linear differential operatorL in the variables 
x = {x1, . . . , xn} is said to be trivially bispectral
if there is a non-zero family of eigenfunctions ψ(
x, 
z) parametrized by 
z = {z1, . . . , zn} such
that

Lψ(
x, 
z) = p(
z)ψ(
x, 
z) and ψ(
x, 
z) = ψ(
z, 
x).
This is a special case of the more general bispectral property first considered in [4] which
does not require that ψ be symmetric, but only that it should also be an eigenfunction for an
operator � in 
z with eigenvalue depending on 
x. (See [6] for a recent overview of this field
and its diverse connections to mathematical physics.)

Bispectrality is related to the duality (cf [7, 14]) of integrable particle systems both at
the classical and the quantum levels. The main result of this paper concerns the quantum
manifestation, but its role in the classical case is also relevant as motivation for the main
result. Therefore, let us recall that the self-duality of the classical Calogero–Moser system
was related to bispectrality in [8] and [16] where the linearizing map for this system was found
to be equivalent to the exchange of spectral and spatial parameters in the KP wavefunction. In
contrast, the self-duality of the higher rank classical systems presented above was conjectured
in [9] due to the fact that they too describe the motion of the poles of bispectral KP Lax operators.

It is interesting that the bispectral problem led us to self-dual classical integrable systems
because bispectrality is really the structure of quantum duality. That is, according to the
BQH [5], dual systems when quantized should share an eigenfunction with spatial and spectral
parameters reversed (and hence self-duality should be manifested as trivial bispectrality). A
naive form of canonical quantization of the Hamiltonian functionH involves formally replacing
yi with the differential operator ∂i . This then leads us to the main question as follows:

Is there a non-zero eigenfunction ψ̃ satisfying the wave equation

H̃ψ̃(
x, 
z) = p(
z)ψ̃(
x, 
z)
for some non-constant function p and the operator H̃ (1) with the symmetry

ψ̃(
x, 
z) = ψ̃(
z, 
x)? (4)

3. Intertwining relations

The operators L and L̃ are said to be intertwined by K if they satisfy

KL = L̃K.

Such relationships are useful as transformations for producing an operator L̃ with specified
spectral properties from a known L. For instance, this is one way to derive the
quantum Calogero–Moser operator (the canonical quantization of the second Calogero–Moser
Hamiltonian function) [3].

One begins with the constant-coefficient operator

� =
n∑
i=1

∂2
i ∈ C[∂1, . . . , ∂n]

in the commutative ring of constant-coefficient operators. Every element of this ring has the
function

φ(
x, 
z) = exp(x1z1 + · · · + xnzn)

as an eigenfunction with eigenvalues depending on 
z and this is perhaps the most elementary
example of trivial bispectrality. The following theorem of Chalykh and Veselov is provided
here not only as an example but also as an important lemma.
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Theorem 3.1 ([3]). If there is a partial differential operator Dn (n � 2) which takes the form
of a polynomial in ∂ij = ∂i − ∂j with coefficients rational in xij = xi − xj (1 � i < j � n)
such that

Dn� = �̃Dn �̃ = �−
∑

1�i<j�n
4x−2

ij .

Then the function

φ̃(
x, 
z) =
∏

1�i<j�n
(zi − zj )

−1Dn[φ(
x, 
z)]

is an eigenfunction for the Calogero–Moser Hamiltonian operator �̃ satisfying φ̃(
x, 
z) =
φ̃(
z, 
x).

It is an immediate consequence of this theorem that one can similarly construct the
quantized Hamiltonian H̃ via an intertwining relationship as detailed in the following theorem.

Theorem 3.2. Let

H =
n∑
i=1

∂2
i − xi and H̃ = H −

∑
1�i<j�n

4(xi − xj )
−2.

Then the operator Dn from theorem 3.1 satisfies

DnH = H̃Dn.

Proof. Since [∂i − ∂j , x1 + x2 + · · · + xn] = 0, one has that

DnH = Dn(�− (x1 + · · · + xn)) = (�̃− (x1 + · · · + xn))Dn = H̃Dn.

�
Remark. This is an interesting result to compare with the one-dimensional case. The ordinary
differential operator ∂2 and ∂2 − 2/x2 are intertwined by the operator ∂ − 1/x, which can be
regarded as the one-dimensional case of theorem 3.1. In contrast, the Airy operator ∂2 − x is
unique among bispectral Schrödinger operators (cf [4]) in that it cannot be intertwined with
another rational operator. Therefore, it may be seen as a somewhat surprising fact that H, its
higher-dimensional analogue, does intertwine with a rational operator.

4. Eigenfunctions

Still, this does not resolve the question of whether H̃ has an eigenfunction which is symmetric
in spatial and spectral parameters. Unfortunately, the first thing one might try turns out to be a
‘wrong turn’. Since the operator H is contained in the commutative ring C[∂2

1 −x1, . . . , ∂
2
n−xn]

(polynomials in n different one-dimensional Airy operators) which has the symmetric common
eigenfunction

σ(
x, 
z) =
n∏
i=1

Ai(xi + zi)

one has immediately the following theorem.

Theorem 4.1. The operator H̃ has eigenfunction σ̃ = Dn[σ ] satisfying the equation

H̃σ̃ =
( ∑

zi

)
σ̃ .
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However, neither σ̃ nor any multiple of it by a non-zero function of 
z is symmetric in
spatial and spectral parameters. This apparent counter-example to the BQH is resolved by
recognizing that H is also contained in another commutative ring with another symmetric
common eigenfunction.

Theorem 4.2. The operators ∂in = ∂i − ∂n (1 � i < n) each commute with H and the
commutative ring C[∂1n, . . . , ∂n−1 n,H] has the symmetric common eigenfunction

ψ(
x, 
z) = exp

(
1

n

∑
1�i<j�n

xij zij

)
Ai

((
1

n

)1/3 n∑
i=1

(xi + zi)

)

satisfying

∂ijψ = zijψ = (zi − zj )ψ and Hψ = pn(
z)ψ
for the polynomial

pn(
z) =
n∑
j=1

(( n∑
i=1

zij

)2

+ zj

)
.

Proof. The easiest way to observe this is by direct computation. For instance, one may derive
pn by first noting that

(∂2
j − xj )ψ =

(( ∑
zij

)2

+
1

n

∑
(xi + zi)− xj

)
ψ +

( ∑
zij

)
ψ ′

for a function ψ ′ that does not matter since it disappears when one sums over j . However, a
more instructive way to verify the claim is to consider the change of variables αi = xi − xn
(1 � i < n) and αn = x1 + x2 + · · · + xn after which the operator H decomposes into a sum of
a constant-coefficient operator in αi for i < n and an Airy operator in αn. �
Theorem 4.3. The function

ψ̃(
x, 
z) =
∏
i<j

z−1
ij Dn[ψ]

satisfies the eigenvalue equation H̃ψ̃ = pn(
z)ψ̃ and is symmetric (satisfying (4)).

Proof. Note that every differential operator D(
x, 
∂) acting on the function φ = exp(
∑
xizi)

merely acts as a multiplication operator, multiplying by the polynomial D(
x, 
z) in 
z with
coefficients that depend on 
x. This is not necessarily true for differential operators acting
on ψ , but it is true that a differential operator which can be written as a polynomial in
∂ij (as Dn can by construction) just multiplies ψ by this same polynomial. In particular,
φ̃/φ = ψ̃/ψ = Dn(
x, 
z) is the same polynomial in 
z and so the symmetry of ψ̃ is equivalent
to the already verified symmetry of φ̃. �

5. Conclusion

We have seen that the self-duality of the quantum Hamiltonian H̃ is directly related to
the separability of the quantum Calogero–Moser Hamiltonian (specifically, the fact that �̃
commutes with any operator in the variable αn = x1 + · · · + xn). This sheds light on the
relationship between the system H and the Calogero–Moser system, and provides additional
support for BQH.

Note that here H̃ and �̃ agree on the hyperplane
∑n

i=1 xi = 0 (which Chalykh–Veselov
considered as a hypothesis anyway in order to avoid separability). Still, there remain essential
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differences between the two. In particular, one finds differences when considering the algebraic
structure of the system since, in contrast to the Calogero–Moser system, there is no first-order
operator commuting with H̃.

The Hamiltonian system quantized above is only one example of many that were suggested
by the results in [9]. See [13] for a hierarchy of classical Hamiltonian functions (of arbitrary
order) which are linearized by an involution and hence should quantize bispectrally.
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