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We define the algebraic variety of almost intertwining matrices to be the set of
triples (X,Y,2) of nXn matrices for whichXZ=Y X+ T for a rank one matrix. A
surprisingly simple formula is given for tau functions of the KP hierarchy in terms

of such triples. The tau functions produced in this way include the soliton and
vanishing rational solutions. The induced dynamics of the eigenvalues of the matrix
X are considered, leading in special cases to the Ruijsenaars—Schneider particle
system. ©2001 American Institute of Physic§DOI: 10.1063/1.1379313

[. INTRODUCTION

The KP hierarchy? is a well-studied system of integrable nonlinear partial differential equa-
tions with Lax form

L _ L0 i=1,2,3
3_ti_[ s +], 1=1,2,0,...

for a monic, first-order pseudodifferential operatbrin one of its formulations, the KP hierarchy
is a set of bilinear equations for the “tau function{t,,t,,t3,t4,...) depending upon infinitely
many “time variables™; (i eZ,). In this paper we will consider functions of the form:

TM(tl,tz,...):Zde(xeg(z)+eg(Y)), (l)

whereM = (X,Y,Z) is a triple ofnxX n constant complex matrices and the functgis defined as
gW):=2, tW, teC. 2)
i=1

(To avoid issues of convergence, we will here consider only the case in which all but a finite
number of the parametetse C are nonzerg.

It is nottrue that(1) always gives the formula for a function which satisfies the KP hierarchy.
For instance, as we shall see from Remark 2.2 and Theorem 3.1, inxtBecase formuldl) is
only a tau function if dg{XZ—YX)(Y—2)]=0. On the other hand, among the solutions one can
obviously write this way are thene-soliton solutionsvhich are the natural generalizations in this
context of the solitary wave from which the term “soliton” was coined by Zabusky and Krdskal.
The standardr function for the one-soliton solution takes the fotin whereM = (X,Y,Z) e C3 is
any triple of scalar constant§lo exclude the degenerate cases we must further assums dhalt
Y-Z are nonzerg. This 7 function describes a single line soliton of the KP equation. More
generally, one may be interestedriunctions ofn-soliton solutiong“nonlinear superpositions”
of n different line solitong or their rational degenerations. Theskinctions are usually written in
a form that looks very different thafi).
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Of course, wherX, Y, andZ are scalar as in the one-soliton case, then the determinant which
appears in(1) is unnecessary. However, the main result of this paper is thai-#saditon solutions
also take the form{1) and that they arise in the case thatY, andZ are threenXn matrices
satisfying the condition rank(Z—Y X) = 1. In fact, this same rank one condition provides not only
the nondegenerate soliton solutions to the KP hierarchy but also their rational degenerations. Thus,
we see that the one-solitarfunction is merely a special case of this much more general formula.

II. ALMOST-INTERTWINING MATRICES
It is common to say that an operatdrintertwines the operatorg andZ if one has that
XZ=Y X (3

Definition 2.1:Given threen X n matricesX, YandZ, we define the rank(X,Y,Z) to which
X intertwinesY and Z by the formula

k(X,Y,Z)=rankK XZ—Y X)=n—dimker( XZ—-Y X).
For fixedk,ne N (0<k=n) define
ME={(X,Y,2)|x(X,Y,Z)<k}

to be the set of all triples afixn matricesM =(X,Y,Z) such that«(M)=<k.

In most instances, one expects to find théX,Y,Z)=n, its maximum value. Fok(X,Y,Z)
to be lower means that does, in fact, intertwing/ andZ on the positive dimensional subspace
ker(XZ—Y X). In particular, when<(X,Y,Z) =0, thenXZ=Y X and soX does actually intertwine
the other two matrices. IY andZ are not intertwined by, then the best one could ask for would
be for k(X,Y,Z) to be equal to one, and so it seems reasonable to say that they are almost
intertwined in this case.

Remark 2.1Note that a triplegX,Y,Z is in Mﬁ precisely when thé&Xx k minor determinants
of the matrix XZ-Y X all vanish. Consequentlw/lﬁ has the geometric structure of an affine
algebraic variety in the i-dimensional vector space af<n matrix triples.

The following elementary observations will be used to establish the connection between
almost intertwining matrices and solitons:

Lemma 2.1» There is a naturaGL(n) X GL(n) action onMﬁ given by

(G,H)eGL(N)XGL(n): (X,Y,2) e MK—(GXH L,GYG L HZH 1) e MK,
which restricts on the diagonal to the natu@lL(n) action of simultaneous conjugation
GeGL(n): (X,Y,2)e M= (GXG L,GYG 1,GZG 1) e MK,
* Let A and() be nxXn matrices satisfying the commutation relationships
[A,Y]=0, [Q,Z]=0,
then
k(X,Y,Z2)=k(AXQ,Y,Z).

Proof: Both claims are easily verified by noting thatX,Y,Z)=<k if and only if

k
XZ=YX+ X, v,0wW, (4)
=1
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for n-vectors{v;} and{w;} and that«(X,Y,Z) is exactly the minimumk for which such an
equation exists. O
The main result of this section is the following lemma:

Lemma 2.2Given threenxn matricesX, Y andZ, let H(a,b,c) e ([a,b,c] be the polyno-
mial defined by

H(a,b,c)=Hi(a)H(b,c)—Hy(b)H,(a,c)+Hy(c)Hy(a,b) (5)
with
H,(a)=de(X(al—2Z)+(al-Y))
and
H,(a,b)=(a—b)detX(al—2Z)(bl—2Z)+(al—Y)(bl-Y)).

If k(X,Y,Z)<1 thenH(a,b,c)=0 is the zero polynomial.
Proof: To say thak(f(,Y,Z)sl is equivalent to saying that there exist vectom@ndw; such
that

XZ—YX=—vwj]. (6)

[In the case<(5(,Y,Z)=O one of these vectors is the zero vedtédso, merely for the sake of
convenience, we introduce the notation

Z.=(al-2), Y.,=(al-Y)

and recall that adM) is the classical adjoint matrpi.e., adj(M)=detM)M L if M is invertiblg].
Now, using(6) to eliminate “XZ,” one can rewriteH,(a), H,(a,b) as

Hi(a)=de(Y,(X+1)+owl), Hy(a,b)=(a—b)de(Y,Yp(X+1)+Y, poWi+0owWl),

wherew,=w;Z.
Next, sinceH (a,b,c) depends ofX polynomially, it is enough to prove that(a,b,c)=0 for
almost allX. Let us assume that d&t{1)=y+0. Then we can eliminate referenceXdy writing

H.(a)=ydel(Y,+vuj), Hy(a,b)=y(a—b)delY,Yp+ Y pvu;+vu,),
where
ul=wy-(X+0)7  ul=wi-(X+1)"%
Let us further rewriteH,(a,b) as
H,(a,b)=(a—h)yde(Y,Yy+ Youl+oulYp+o(us+uly))
=(a—b)yde((Ya+vu])(Yy+ovul)+vul).
Finally, denoteY —vul by M. We obtain
H.(a)=yde(M,), H,(a,b)=y(a—b)deiMM,+vuj).
Note that

dei( M Mp+ovul)=det(M,)de( M)+ ujadjiM,My)v =y 2Hi(a)H(b)(1+uiM_ M, )
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and sincg M,,M,]=0 we also have that
—Ipng—1_ 1 -1 -1
Mz "My _a_b(Mb —M, ).

Therefore,

Hi(a)(uj adiMp)v)—H(b)(uj adiM,)v)
y(a—Db) '

detM My+oul)=y Hy(a)H(b)+

So, using the notatiop(a)=ay 2H,(a)—y ‘u'adj(M,)v, we see that de¥{,M,+vu") is a
Bezoutian of the form

_ p(a)Hy(b)—p(b)Hy(a)
- a—b '

det{M M,+ovu’)

SubstitutingH,(a,b) = y(p(a)H.(b) —p(b)H4(a)) into the expression fod (a,b,c) imme-
diately yieldsH=0. O
Remark 2.2:The special casa=2 turns out to be surprisingly simple. A quick calculation

verifies that for arbitrary X2 matricesX, Y, andZ the polynomialH(a,b,c) is given by the
formula

H(a,b,c)=(a—b)(b—c)(c—a)def(XZ—YX)(Y-2)].

lll. TAU FUNCTIONS

A. Main theorem

It is easy to check that ik(M) =0 then the formula fotr,, defined in(1) is a tau function of
the KP hierarchy. In fact, in this case in whi¢B) is satisfied one has

(s tots,..) =de(X+1)expg >, _21 ()\})ti),
=

i=
where{\;} are the eigenvalues of. Since the function
u(x,y,t)=2(log my(x,y,t,0,0,..))xx=0

is the trivial solution to the KP equation, we say thgt is merely a gauge transformation of the
trivial tau function.

Moreover, withg defined as in2) and 7, defined by(1), we observe that this is still &
function in the casec(M)=1. In fact, it is more interesting in this “almost-intertwining” case
since we get nontrivial soliton and rational solutions in this way.

Theorem 3.1if k(M)=<1 for M=(X,Y,Z) then the function

ity ts,..)=de(Xed@ +e9V)),  g(wW)=>, ;W
i=1

is a tau function of the KP hierarchy with correspondistationary Baker—Akhiezer function

_de(X(zI—Z)exz+(zI—Y)eXY) .
m(x2):= Z" de( X &%+ eXY) €
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Proof: Given the semi-infinite vectorfz(tl,tz,tg,...), we use thenotation 7y(t)
=7u(ty,t5,...). For an arbitrary constanta, we define the semi-infinite vectofa]

=(a,a’/2,a%3,...). Then, it is sufficient to prove that the continuous funcﬁ()ﬁ) defined in(1)
satisfies the Hirota equation in Miwa fofm

0=(b—c)r(t—[a P r(t—[b -[c ) —(a—c)r(t—[b ) r(t—[a *]-[c!])
+(a—b)r(t—[c P r(t—[a ]—-[b~1]) (7)

uniformly in @, b, andc and for allt.
However, from the definition we see that

T(f’_[a—l]):de(xeg(Z)eIn(l—a712)+eg(Y)eln(l—a71Y))
=a "de(ed)de(X(al—2)+(al—Y))
=a "de(edY)H(a),
where we have chosexi=e 9")Xe%? and used the notation of Lemma 2.2. Similarly,
(a—b)r(t—[a 1]—[b~1])=a "b "de(e¥")H,(a,b).

Consequently(7) is equivalent to demonstrating that the polynontila,b,c) in Lemma 2.2 is
zero in the case of thiX, Y, andZ. But, according to the second result in Lemma 2.1 we have that

k(X,Y,Z)=k(X,Y,Z)<1 and so Lemma 2.2 demonstrates that the Hirota equation is satisfied.
Once we know that,, is a tau function, the formula fapy, is derived from simply using the
“famous Japanese formula?’

Cmax—z 1 —27%2,-27%8,.)
nx2)= (x,0,0,.) e

Note that the numerator is simply,(t —[z~1]) with f=(x,0,0,...). So, again expanding this in
terms of the power series for the logarithm we derive the desired expressign, for O

Remark 3.1Technically, although the function=0 solves the bilinear equations of the KP
hierarchy, it is not generally considered to be a tau funcfibnparticular, there is no associated
operator( satisfying the Lax equation or functiam(x,y,t) satisfying the KP equatiohln the
preceding we have not been careful to make certain thsthonzero. In fact, one can certainly
chooseM e Mﬁ so thatry,; = 0. Consequently, Theorem 3.1 should be understood to say that if
is nonzero(which is generally the cag¢hen it is a KP tau function.

Remark 3.2:Since the Baker—Akhiezer functios,, in Theorem 3.1 has the property that
Z"e *%y, is a polynomial inz, it must be thatry, is the tau function of a rank-one KP solution
with a (singulay rational spectral curve. In particular, it must be a soliton solution or one of its
rational degenerations. Well-known consequeficesf this fact are the following:

Corollary 3.1: Let K=K (tq,t5,t3,... ,dy) be the ordinary differential operator determined
by simply substituting the formal symbal, in for z in the polynomial

B de( X(z1—2)e9? + (z1-Y)ed™)
- dei Xe'? +e9)) '

K(ty,ts,...,2)
Then, equating andt,, £y, =Kd,K ! satisfies the Lax equations

J — i
a—tiﬁ—[ﬁy(ﬁh]-
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Moreover, the function

(92
u(x,y,t) :zﬁlog ™(X,Y,t,0,0,..)
satisfies the KP equation
%uyy: (U= %(GUUX'F Uy )x -

Remark 3.3it is well known and easily verifie@cf. Ref. 2 that multiplication by a function
of the form expEyt) takes one tau function to another having the same corresponding Lax
operatorL. Such a change is often referred to as a “gauge transformation” in KP theory. Since
detexpg(Y) is a function of this form withyi=27\} (where\; are the eigenvalues of counted
according to multiplicity it follows that:

Corollary 3.2: For M=(X,Y,Z) e M},

Tu(ty ts,...)=de(Xed@Pe 9 1)

is also a KP tau function differing from,, by only a gauge transformation.

Remark 3.4:Since the tau function and Baker—Akhiezer function are defined as they are by
determinants 0K, Y, andZ, simultaneously conjugating all three leaves the corresponding solution
unchanged. Consequently, it would be possible to use Lemma 2.1 to take to quoﬂaﬁtbyfthe

action of GL and then would be natural to defirng for M e Vﬁ:Mﬁ/G L(n).

B. Special cases

1. Gelfan’d —Dickii hierarchies (N-KdV)

The N-KdV or Gelfan’d—Dickii hierarchies are special classes of KP solutions for whlth
is an ordinary differential operator and hence is independent of the KP flows whose indices are
multiples of N. In particular, we say a tau function is &hKdV tau function if it factors asr
=f.g where

i =0 VieN &f—O
ﬁg_ I ely, E—.

In other words, except for a factor independgntr is independent of; for all j that are multiples
of N.
Let M*(N) be the subset aM?,

MEN)Y={(X,Y,Z) e ML YN=2ZN},

Theorem 3.2: For M eMﬁ(N), the corresponding tau function,, is a solution of the
N-KdV hierarchy.
Proof: If we consider only the dependence upgrandt; (j a multiple ofN) then

TM:de(Xet12+thJ+et1Y+thJ)

:de(Xetlz+tjzi+et1Y+tsz)

7
=de(Xe"?+el1")defe'i%).

O
For example, if we consider the restrictidf= — Z, then we are looking for matrix paifX,2)
satisfying
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rank XZ+2zZX)=1.

In this case, the formulél) will produce a tau-function solution to the KdV hierarctigdepen-
dent of all even time flows (Note that special cases have been considered elsewhere in the
literature in the context of integrable particle systert.

2. Solitons

The n-soliton solutions to the KP hierarchy are identified by these properties:
(1) The BA function(x,z) when multiplied by a degree polynomialq(z)=z"+--- has the
form

#(x,2)=q(2) h(x,2) =

Zl ai(x)zi)exz.

(2) There aren independent linear “conditions” satisfied hg(x,z) of the form

& (X \)+ Bip(x,u)=0, 1<i<n

These solutions can be constructed frmrrﬁ by choosing the poinil =(X,Y,Z) with

BN )

This can be verified, for instance, by noting that becds&]=0, the tau functiori,, takes the
form (cf. Corollary 3.2

X Yij=umidij, Zij=\idjj.

T=de(Xed @941,

For any index sefC{1, ... ,n}, the principal minor oiXe%®~9") can be written as

icy B i Mi

Hﬁeg()‘i)_g(“i))de< 1 ) _
A ii’eld

The latter determinant is a Cauchy determinant and is equal to

(NP =N (i — miv) 1
i cierr (T i) (pi=Nir) Tey Ni— i

Setting

a;

:Bi(}\i_ﬂi) '

Ci
we obtain

(Ni= N (i — i)
’,;-: C.eg()\i)_g(ﬂi) ,
Jc{;..,n} |1;[J ! i,irel:[;mr (N = pin)(mi—=Ni)

which coincides with the known formula for thissoliton solution of the KP hierarcHy.
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3. Polynomial = functions and rational solutions

Clearly, in the case that andZ are chosen to be nilpotent, the definitionf produces a
polynomialin the time variables; . It is perhaps of greater interest to note that one may also get
tau functions that are—up to a gauge transformation—polynomigl lout an infinite series if all
t; are considered.

For example, choosing

110 N1 0 A0 O
Xx={1 0 0 vy={0 X\ 1 z=(1 N O
100 0 0 A 0 1 \

leads to(after a gauge transformation to remove an exponential factor

7(x,y,t,0,0,..)

2 9 442 Xz 3 2 2
=1+ (= 3N+ NIt S AP -+ (BN 20— 1)y + 207y + (1430 t+ 20y,

Such solutions are well known and have been studied in previous gHb&rs?However,
one should especially compare the present approach with that of Wilsdrere these “vanishing
rational KP solutions” are produced from matrix pafb§2) satisfying rankKZ—2ZX+1)=1. The
main results in that paper concern the induced dynamics of the eigenvalues which behave as
particles in a Calogero—Moser particle system. So, it may be of interest to similarly investigate the
dynamics of the eigenvalues associated with almost-intertwining matrices.

IV. EIGENVALUE DYNAMICS

One of the most interesting things about the Ruijsenaars—SchriBifeparticle systeh'®is
its connection to soliton tau functions. Specifically, certain KP tau functions can be written as

T(tl,tz,...)zdetx+|),

where X=X(t4,t5,t3,...) is amatrix whose eigenvalues move according to the Ruijsenaars—
Schneider Hamiltonian.

In this section we similarly study the dynamics of eigenvalues of time-dependent matrices in
the context of almost-intertwining matrices to both reproduce and extend known results about the
RS system and its connection to solitons.

A. Solitons and a matrix flow

Theorem 4.1: The vector fieldsV; on the space ofiX n matrix triples defined by
Vi(Xo,Y,Z)=(XoZ'— Y'X,0,0) (8)
are tangent to the manifol,d/lﬁ and induce the flows in the variablgsparametrized as
M=(X,Y,Z)= (e 9Y)Xe%? Y,Z). 9
Proof: Note that the flows specified have the stated vector fields and that
XiZ—Y X=e"9(XZ—Y X)ed?

is a rank one matrix iXoZ—Y X, is. O

Remark 4.1:Given a parametrized rowX((,Y,Z)eMﬁ as previously, the functioriy,
=(X;+1) is another way to write the gauge transformed tau function from Corollary 3.2 with
M=(Xp,Y,2).
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B. General equations for eigenvalue dynamics

Given any matrice¥X,, Y, Z such thatx(Xy,Y,Z)=1 let us defineX= X, according ta(9).
If we denote the eigenvalues ¥ by {Q;(t)} (1<i=<n), to what extent can we describe their
dynamics by intrinsic equatioriglepending only orQ; and their derivative®

In what follows we will only be considering the flow under the first time paramgtebut
will write simply t in order to simplify exposition and will use a “dot” to indicate differentiation
with respect to this parameter.

We define vectors andw by the formula

(XoZ—=Y Xg)=vw' (10
and so we have the equations of motion
X=vw", Y=0, Z=0. (11)

For convenience we introduce tliéme-dependentmatrix U which diagonalizesX and the
logarithms of the eigenvaluag

Qi 0 O
Q 0 0
=UX —-1_ =] : 12
Q=UxuT= o | @@ (12
and define in analogy t(l0) the matrices and vectors
Y=UYyu!, z=uUzu!, $=Up, Ww=wuU! (13
so that
QZ-YQ=3W". (14)

Note, in particular, that looking at an individual element of Etg) yields
QiZij— QY =0;W; . (15
Now, definingM =UU~! we have in analogy t¢11)
Q=[M,Q]+oW", Y=[M,Y], Z=[M,Z]. (16)
SinceQ andQ have no off diagonal elements, we get fr¢i6) that
Qi=0W; = e, (17)
and
M”:l_)’—wi (i#j). (18

It turns out to be especially useful to write the equations of motion in ternes ther than
Q; because then we find by multiplyirng6) by Q ? that
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4 O
: =QQ '=M-QMQ '+QZQ'-¥. (19
0 qn

SinceQ is diagonal,M —QMQ™! has no diagonal an@ZQ '—Y has the same diagonal s
—¥ and so

a=2Z-Y);. (20)

Finally, we can differentiaté20) and use(15), (17), and(18) to find the equation of motion

Gi=([M,Z—-Y)); (22)
:gi (Mik(Zii = Yi) = Mia(Zik— Yir)) (22
B QiQ« 00, Zy QiQx 01 WiZiy
&\ QiQi—Q " Qi " Qu(Qk— Qi) " Qx @3
:E. QiQ(Qi+ Q) — (Qi— Q) (Qi0 Wy Zix — Q0 W; Zy ) . (24)

KZi QiQu(Qi—Qy)

C. A special case

We can further simplify(24) assuming thafv has no zero component. In that case, we can
utilize additional freedom of conjugation by a diagonal matrix to le@uenchanged but modify
u.

In particular, if W is a vector with no zero component, then we can put it in a form where
w=(1,1,1,...,1) by multiplyingJ by the diagonal matrix withv;’s along its diagonal. Now, in this
“gauge,” we know thatw; =1 and so by(17) we know thatj;=Q;. This then gives us that

oS QiQu(Qi*+ Qi ~ (Qi~ Q(QQiZik—~ QuQiZki)
4= & QiQ(Qi—Qy) '

Ideally, we would like to be able to completely eliminatg from this equation and have an
“intrinsic” equation for the eigenvalues. It seems that this can only be done when certain addi-
tional simplifying assumptions are made.

Suppose that we are in the case that

Combining Eqs(15) and(25) we find that

Substituting this intd24) and again usingl7) one finds the intrinsic equations of motion

NNy Q(Qi+Qy
W0V 000G Qe )

(26)

Downloaded 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3550 J. Math. Phys., Vol. 42, No. 8, August 2001 A. Kasman and M. Gekhtman

Note that the equations are independeny.oln the case\ = — 1 the dynamics 0f26) is the
Ruijsenaars—Schneider model.

V. COMMENTS AND CONCLUSIONS

It is interesting to note that restrictions ai(X,Y,Z) for triples of square matrices have arisen
before in the context of integrable systems. For example, though the notations are different, the
key operator identity used by Sakhnovitis such a restriction. Perhaps there is a deep connec-
tion between the results of that work and this one, though the relationship is not immediately
apparent to us. A more relevant result was obtained by Nijhoff and Chafykino used the
condition rank KZ—qZX)=1 for invertible X and Z and scalaig to construct solutions to the
g-difference KP hierarchy. It is reasonable to suppose that their result could now also be obtained
as a discretization of the results in the present work in the specialYcasgZ. [Another matrix
approact’ to g-KP made use of the condition ranX{—qY X+1)=1.]

The suggestive appearance of these spaces of matrices in such different contexts within the
study of integrable systems might indicate that we should look more carefully at the manifolds
Mﬁ For instance, we have implicitly constructed a map frﬂmE to the infinite dimensional
GrassmannianGr, and/\/lﬁ naturally has the structure of an algebraic variety, but so far we have
little understanding of the geometry.

Wilson'® constructs an adelic Grassmannian and a Hilbert scheme from the set of matrices
satisfying rank [X,Z]+1)=1. Moreover, the natural symmetry of this set which is manifested as
the involution (X,Z)~—(Z",XT) has significance both for the KP hierarctbjspectrality and the
Calogero—Moser particle syste(self-duality). So, it is reasonable to wonder how the obvious
symmetries of/\/l,"1 are reflected in the soliton solutions to the KP hierarchy. We have already noted
that multiplying X by a function ofY on the left and a function 6t on the right corresponds to the
KP flows. Note also that ik(X,Y,Z)=1 andX is invertible therk(X*,Z,Y) =1 as well and that
this triple corresponds to the same KP solutidn.particular, these two points u‘vl,l1 get mapped
to the same point in &) Similarly, if Y is invertible thenx(Y,X,XZY 1)=1, but it is not
immediately apparent what symmetry of KP is analogous.

One alternative characterization of '@iis as the Grassmannian of finite dimensional sub-
spaces of finitely supported distributiohSpecifically, to identify a pointV e Grait is sufficient
to identify the finitely supported distributions im which annihilate the normalized Baker—
Akhiezer function. We showed in Sec. IlIB2 that in the case of nondegenerate solitons, the
eigenvalues ofY and Z determine the support of the distributions aXdletermines the coeffi-
cients. We conjecture that this situation holds in general:

Conjecture 5.1The support of the distributions annihilatizfi,, for M=(X,Y,Z) eMﬁ is
the set of eigenvalues of the matricésand Z with the highest derivative taken at a particular
eigenvalue being bounded by the size of the corresponding Jordan blocks.
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