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We define the algebraic variety of almost intertwining matrices to be the set of
triples ~X,Y,Z! of n3n matrices for whichXZ5YX1T for a rank one matrixT. A
surprisingly simple formula is given for tau functions of the KP hierarchy in terms
of such triples. The tau functions produced in this way include the soliton and
vanishing rational solutions. The induced dynamics of the eigenvalues of the matrix
X are considered, leading in special cases to the Ruijsenaars–Schneider particle
system. ©2001 American Institute of Physics.@DOI: 10.1063/1.1379313#

I. INTRODUCTION

The KP hierarchy1,2 is a well-studied system of integrable nonlinear partial differential eq
tions with Lax form

]L
]t i

5@L,L1
i #, i 51,2,3,...

for a monic, first-order pseudodifferential operatorL. In one of its formulations, the KP hierarch
is a set of bilinear equations for the ‘‘tau function’’t(t1 ,t2 ,t3 ,t4 ,...) depending upon infinitely
many ‘‘time variables’’t i ( i PZ1). In this paper we will considert functions of the form:

tM~ t1 ,t2 ,...!ªdet~Xeg~Z!1eg~Y!!, ~1!

whereM5(X,Y,Z) is a triple ofn3n constant complex matrices and the functiong is defined as

g~W!ª(
i 51

`

t iW
i , t iPC. ~2!

~To avoid issues of convergence, we will here consider only the case in which all but a
number of the parameterst iPC are nonzero.!

It is not true that~1! always gives the formula for a function which satisfies the KP hierarc
For instance, as we shall see from Remark 2.2 and Theorem 3.1, in the 232 case formula~1! is
only a tau function if det@(XZ2YX)(Y2Z)#50. On the other hand, among the solutions one
obviously write this way are theone-soliton solutionswhich are the natural generalizations in th
context of the solitary wave from which the term ‘‘soliton’’ was coined by Zabusky and Krusk3

Thestandardt function for the one-soliton solution takes the form~1! whereM5(X,Y,Z)PC3 is
any triple of scalar constants.~To exclude the degenerate cases we must further assume thatX and
Y–Z are nonzero.! This t function describes a single line soliton of the KP equation. M
generally, one may be interested int functions ofn-soliton solutions~‘‘nonlinear superpositions’’
of n different line solitons! or their rational degenerations. Theset functions are usually written in
a form that looks very different than~1!.

a!Electronic mail: kasman@math.cofc.edu
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Of course, whenX, Y, andZ are scalar as in the one-soliton case, then the determinant w
appears in~1! is unnecessary. However, the main result of this paper is that then-soliton solutions
also take the form~1! and that they arise in the case thatX, Y, and Z are threen3n matrices
satisfying the condition rank(XZ2YX)51. In fact, this same rank one condition provides not o
the nondegenerate soliton solutions to the KP hierarchy but also their rational degenerations
we see that the one-solitont function is merely a special case of this much more general form

II. ALMOST-INTERTWINING MATRICES

It is common to say that an operatorX intertwines the operatorsY andZ if one has that

XZ5YX. ~3!

Definition 2.1:Given threen3n matricesX, YandZ, we define the rankk(X,Y,Z) to which
X intertwinesY andZ by the formula

k~X,Y,Z!5rank~XZ2YX!5n2dim ker~XZ2YX!.

For fixedk,nPN (0<k<n) define

Mn
k5$~X,Y,Z!uk~X,Y,Z!<k%

to be the set of all triples ofn3n matricesM5(X,Y,Z) such thatk(M )<k.
In most instances, one expects to find thatk(X,Y,Z)5n, its maximum value. Fork(X,Y,Z)

to be lower means thatX does, in fact, intertwineY andZ on the positive dimensional subspa
ker(XZ2YX). In particular, whenk(X,Y,Z)50, thenXZ5YX and soX does actually intertwine
the other two matrices. IfY andZ are not intertwined byX, then the best one could ask for wou
be for k(X,Y,Z) to be equal to one, and so it seems reasonable to say that they are a
intertwined in this case.

Remark 2.1:Note that a triple~X,Y,Z! is in Mn
k precisely when thek3k minor determinants

of the matrix XZ–YX all vanish. Consequently,Mn
k has the geometric structure of an affin

algebraic variety in the 3n2-dimensional vector space ofn3n matrix triples.
The following elementary observations will be used to establish the connection bet

almost intertwining matrices and solitons:
Lemma 2.1:• There is a naturalGL(n)3GL(n) action onMn

k given by

~G,H !PGL~n!3GL~n!: ~X,Y,Z!PMn
k°~GXH21,GYG21,HZH21!PMn

k ,

which restricts on the diagonal to the naturalGL(n) action of simultaneous conjugation

GPGL~n!: ~X,Y,Z!PMn
k°~GXG21,GYG21,GZG21!PMn

k .

• Let L andV be n3n matrices satisfying the commutation relationships

@L,Y#50, @V,Z#50,

then

k~X,Y,Z!5k~LXV,Y,Z!.

Proof: Both claims are easily verified by noting thatk(X,Y,Z)<k if and only if

XZ5YX1(
i 51

k

v i ^ wi ~4!
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for n-vectors $v i% and $wi% and thatk(X,Y,Z) is exactly the minimumk for which such an
equation exists. h

The main result of this section is the following lemma:
Lemma 2.2:Given threen3n matricesX̂, Y andZ, let H(a,b,c)PC@a,b,c# be the polyno-

mial defined by

H~a,b,c!5H1~a!H2~b,c!2H1~b!H2~a,c!1H1~c!H2~a,b! ~5!

with

H1~a!5det~X̂~aI2Z!1~aI2Y!!

and

H2~a,b!5~a2b!det~X̂~aI2Z!~bI2Z!1~aI2Y!~bI2Y!!.

If k(X̂,Y,Z)<1 thenH(a,b,c)[0 is the zero polynomial.
Proof: To say thatk(X̂,Y,Z)<1 is equivalent to saying that there exist vectorsv andw1 such

that

X̂Z2YX̂52vw1
T . ~6!

@In the casek(X̂,Y,Z)50 one of these vectors is the zero vector.# Also, merely for the sake of
convenience, we introduce the notation

Za5~aI2Z!, Ya5~aI2Y!

and recall that adj~M! is the classical adjoint matrix@i.e., adj(M )5det(M)M21 if M is invertible#.
Now, using~6! to eliminate ‘‘X̂Z, ’’ one can rewriteH1(a), H2(a,b) as

H1~a!5det~Ya~X̂1I !1vw1
T!, H2~a,b!5~a2b!det~YaYb~X̂1I !1Ya1bvw1

T1vw2
T!,

wherew2
T5w1

TZ.
Next, sinceH(a,b,c) depends onX̂ polynomially, it is enough to prove thatH(a,b,c)50 for

almost allX̂. Let us assume that det(X̂1I)5gÞ0. Then we can eliminate reference toX̂ by writing

H1~a!5g det~Ya1vu1
T!, H2~a,b!5g~a2b!det~YaYb1Ya1bvu1

T1vu2
T!,

where

u1
T5w1•~X̂1I !21, u2

T5w2
T
•~X̂1I !21.

Let us further rewriteH2(a,b) as

H2~a,b!5~a2b!g det~YaYb1Yavu1
T1vu1

TYb1v~u2
T1u1

TY!!

5~a2b!g det~~Ya1vu1
T!~Yb1vu1

T!1vu2
T!.

Finally, denoteY2vu1
T by M. We obtain

H1~a!5g det~Ma!, H2~a,b!5g~a2b!det~MaMb1vu2
T!.

Note that

det~MaMb1vu2
T!5det~Ma!det~Mb!1u2

T adj~MaMb!v5g22H1~a!H1~b!~11u2
TMa

21Mb
21v !
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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and since@Ma ,Mb#50 we also have that

Ma
21Mb

215
1

a2b
~Mb

212Ma
21!.

Therefore,

det~MaMb1vu2
T!5g21H1~a!H1~b!1

H1~a!~u2
T adj~Mb!v !2H1~b!~u2

T adj~Ma!v !

g~a2b!
.

So, using the notationp(a)5ag22H1(a)2g21uT adj(Ma)v, we see that det(MaMb1vuT) is a
Bezoutian of the form

det~MaMb1vuT!5
p~a!H1~b!2p~b!H1~a!

a2b
.

SubstitutingH2(a,b)5g(p(a)H1(b)2p(b)H1(a)) into the expression forH(a,b,c) imme-
diately yieldsH[0. h

Remark 2.2:The special casen52 turns out to be surprisingly simple. A quick calculatio
verifies that for arbitrary 232 matricesX̂, Y, and Z the polynomialH(a,b,c) is given by the
formula

H~a,b,c!5~a2b!~b2c!~c2a!det@~X̂Z2YX̂!~Y2Z!#.

III. TAU FUNCTIONS

A. Main theorem

It is easy to check that ifk(M )50 then the formula fortM defined in~1! is a tau function of
the KP hierarchy. In fact, in this case in which~3! is satisfied one has

tM~ t1 ,t2 ,t3 ,...!5det~X1I !expS (
i 51

`

(
j 51

n

~l j
i !t i D ,

where$l j% are the eigenvalues ofY. Since the function

u~x,y,t !52~ logtM~x,y,t,0,0,...!!xx50

is the trivial solution to the KP equation, we say thattM is merely a gauge transformation of th
trivial tau function.

Moreover, withg defined as in~2! and tM defined by~1!, we observe that this is still at
function in the casek(M )51. In fact, it is more interesting in this ‘‘almost-intertwining’’ cas
since we get nontrivial soliton and rational solutions in this way.

Theorem 3.1:If k(M )<1 for M5(X,Y,Z) then the function

tM~ t1 ,t2 ,...!5det~Xeg~Z!1eg~Y!!, g~W!5(
i 51

`

t iW
i

is a tau function of the KP hierarchy with corresponding~stationary! Baker–Akhiezer function

cM~x,z!ª
det~X~zI2Z!exZ1~zI2Y!exY!

zn det~XexZ1exY!
exz.
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: Given the semi-infinite vectortW5(t1 ,t2 ,t3 ,...), we use thenotation tM( tW)
5tM(t1 ,t2 ,...). For an arbitrary constant a, we define the semi-infinite vector@a#

5(a,a2/2,a3/3,...). Then, it is sufficient to prove that the continuous functiont( tW) defined in~1!
satisfies the Hirota equation in Miwa form4,5

05~b2c!t~ tW2@a21# !t~ tW2@b21#2@c21# !2~a2c!t~ tW2@b21# !t~ tW2@a21#2@c21# !

1~a2b!t~ tW2@c21# !t~ tW2@a21#2@b21# ! ~7!

uniformly in a, b, andc and for all tW.
However, from the definition we see that

t~ tW2@a21# !5det~Xeg~Z!eln~ I 2a21Z!1eg~Y!eln~ I 2a21Y!!

5a2n det~eg~Y!!det~X̂~aI2Z!1~aI2Y!!

5a2n det~eg~Y!!H1~a!,

where we have chosenX̂5e2g(Y)Xeg(Z) and used the notation of Lemma 2.2. Similarly,

~a2b!t~ tW2@a21#2@b21# !5a2nb2n det~eg~Y!!H2~a,b!.

Consequently,~7! is equivalent to demonstrating that the polynomialH(a,b,c) in Lemma 2.2 is
zero in the case of thisX̂, Y, andZ. But, according to the second result in Lemma 2.1 we have
k(X̂,Y,Z)5k(X,Y,Z)<1 and so Lemma 2.2 demonstrates that the Hirota equation is satis

Once we know thattM is a tau function, the formula forcM is derived from simply using the
‘‘famous Japanese formula,’’2

cM~x,z!5
tM~x2z21,2z22/2,2z23/3,...!

tM~x,0,0,...!
exz.

Note that the numerator is simplytM( tW2@z21#) with tW5(x,0,0,...). So, again expanding this
terms of the power series for the logarithm we derive the desired expression forcM . h

Remark 3.1:Technically, although the functiont[0 solves the bilinear equations of the K
hierarchy, it is not generally considered to be a tau function.@In particular, there is no associate
operatorL satisfying the Lax equation or functionu(x,y,t) satisfying the KP equation.# In the
preceding we have not been careful to make certain thatt is nonzero. In fact, one can certain
chooseMPMn

1 so thattM50. Consequently, Theorem 3.1 should be understood to say thattM

is nonzero~which is generally the case! then it is a KP tau function.
Remark 3.2:Since the Baker–Akhiezer functioncM in Theorem 3.1 has the property th

zne2xzcM is a polynomial inz, it must be thattM is the tau function of a rank-one KP solutio
with a ~singular! rational spectral curve. In particular, it must be a soliton solution or one o
rational degenerations. Well-known consequences6–8 of this fact are the following:

Corollary 3.1: Let K5KM(t1 ,t2 ,t3 ,... ,]x) be the ordinary differential operator determine
by simply substituting the formal symbol]x in for z in the polynomial

K~ t1 ,t2 ,... ,z!5
det~X~zI2Z!eg~Z!1~zI2Y!eg~Y!!

det~Xe~Z!1eg~Y!!
.

Then, equatingx and t1 , LM5K]xK
21 satisfies the Lax equations

]

]t i
L5@L,~Li !1#.
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Moreover, the function

u~x,y,t !ª
]2

]x2 logtM~x,y,t,0,0,...!

satisfies the KP equation

3
4uyy5~ut2

1
4~6uux1uxxx!!x .

Remark 3.3:It is well known and easily verified~cf. Ref. 2! that multiplication by a function
of the form exp(Sgiti) takes one tau function to another having the same corresponding
operatorL. Such a change is often referred to as a ‘‘gauge transformation’’ in KP theory. S
det expg(Y) is a function of this form withg i5Sl j

i ~wherel j are the eigenvalues ofY counted
according to multiplicity! it follows that:

Corollary 3.2: For M5(X,Y,Z)PMn
1,

t̂M~ t1 ,t2 ,...!5det~Xeg~Z!e2g~Y!1I !

is also a KP tau function differing fromtM by only a gauge transformation.
Remark 3.4:Since the tau function and Baker–Akhiezer function are defined as they a

determinants ofX, Y, andZ, simultaneously conjugating all three leaves the corresponding solu
unchanged. Consequently, it would be possible to use Lemma 2.1 to take to quotient ofMn

1 by the
action of GL and then would be natural to definet M̄ for M̄PMn

15Mn
1/GL(n).

B. Special cases

1. Gelfan’d –Dickii hierarchies (N-KdV)

The N-KdV or Gelfan’d–Dickii hierarchies are special classes of KP solutions for whichLN

is an ordinary differential operator and hence is independent of the KP flows whose indic
multiples of N. In particular, we say a tau function is anN-KdV tau function if it factors ast
5 f •g where

]

]t iN
g50 ; i PN,

]

]t1
f 50.

In other words, except for a factor independentt1 , t is independent oft j for all j that are multiples
of N.

Let Mn
1(N) be the subset ofMn

1,

Mn
1~N!5$~X,Y,Z!PMn

1:YN5ZN%.

Theorem 3.2: For MPMn
1(N), the corresponding tau functiontM is a solution of the

N-KdV hierarchy.
Proof: If we consider only the dependence upont1 and t j ~ j a multiple ofN! then

tM5det~Xet1Z1t jZ
j
1et1Y1t jY

j
!

5det~Xet1Z1t jZ
j
1et1Y1t jZ

j
!

5det~Xet1Z1et1Y!det~et jZ
j
!.

h

For example, if we consider the restrictionY52Z, then we are looking for matrix pairs~X,Z!
satisfying
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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rank~XZ1ZX!51.

In this case, the formula~1! will produce a tau-function solution to the KdV hierarchy~indepen-
dent of all even time flows!. ~Note that special cases have been considered elsewhere i
literature in the context of integrable particle systems.9,10!

2. Solitons

The n-soliton solutions to the KP hierarchy are identified by these properties:
~1! The BA functionc(x,z) when multiplied by a degreen polynomialq(z)5zn1••• has the

form

cW ~x,z!5q~z!c~x,z!5S (
i 51

n

ai~x!zi D exz.

~2! There aren independent linear ‘‘conditions’’ satisfied byc̄(x,z) of the form

â i c̄~x,l i !1b̂ i c̄~x,m i !50, 1< i<n

~with l iÞm i!.
These solutions can be constructed fromMn

1 by choosing the pointM5(X,Y,Z) with

Xi j 5
a i

b j~l j2m i !
, Yi j 5m id i j , Zi j 5l id i j .

This can be verified, for instance, by noting that because@Y,Z#50, the tau functiont̂M takes the
form ~cf. Corollary 3.2!

t̂5det~Xeg~Z!2g~Y!1I !.

For any index setJ,$1, . . . ,n%, the principal minor ofXeg(Z)2g(Y) can be written as

S )
i PJ

a i

b i
eg~l i !2g~m i !D detS 1

l i2m i 8
D

i ,i 8PJ

.

The latter determinant is a Cauchy determinant and is equal to

)
i ,i 8PJ; i , i 8

~l i2l i 8!~m i2m i 8!

~l i2m i 8!~m i2l i 8!
)
i PJ

1

l i2m i
.

Setting

ci5
a i

b i~l i2m i !
,

we obtain

t̂5 (
J,$1,... ,n%

)
i PJ

cie
g~l i !2g~m i ! )

i ,i 8PJ; i , i 8

~l i2l i 8!~m i2m i 8!

~l i2m i 8!~m i2l i 8!
,

which coincides with the known formula for thisn-soliton solution of the KP hierarchy.11
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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3. Polynomial t functions and rational solutions

Clearly, in the case thatY andZ are chosen to be nilpotent, the definition oftM produces a
polynomialin the time variablest i . It is perhaps of greater interest to note that one may also
tau functions that are—up to a gauge transformation—polynomial int1 but an infinite series if all
t i are considered.

For example, choosing

X5S 1 1 0

1 0 0

1 0 0
D , Y5S l 1 0

0 l 1

0 0 l
D , Z5S l 0 0

1 l 0

0 1 l
D

leads to~after a gauge transformation to remove an exponential factor!:

t~x,y,t,0,0,...!

511~23l13l2!t1
9

2
l4t21

x2

2
1~6l3t12l21!y12l2y1~113l2t12ly!x.

Such solutions are well known and have been studied in previous papers.6,8,12–14However,
one should especially compare the present approach with that of Wilson,15 where these ‘‘vanishing
rational KP solutions’’ are produced from matrix pairs~X,Z! satisfying rank(XZ2ZX1I )51. The
main results in that paper concern the induced dynamics of the eigenvalues which beh
particles in a Calogero–Moser particle system. So, it may be of interest to similarly investiga
dynamics of the eigenvalues associated with almost-intertwining matrices.

IV. EIGENVALUE DYNAMICS

One of the most interesting things about the Ruijsenaars–Schneider~RS! particle system9,16 is
its connection to soliton tau functions. Specifically, certain KP tau functions can be written

t~ t1 ,t2 ,...!5det~X1I !,

where X5X(t1 ,t2 ,t3 ,...) is a matrix whose eigenvalues move according to the Ruijsenaa
Schneider Hamiltonian.

In this section we similarly study the dynamics of eigenvalues of time-dependent matric
the context of almost-intertwining matrices to both reproduce and extend known results abo
RS system and its connection to solitons.

A. Solitons and a matrix flow

Theorem 4.1:The vector fieldsVi on the space ofn3n matrix triples defined by

Vi~X0 ,Y,Z!5~X0Zi2YiX0,0,0! ~8!

are tangent to the manifoldMn
1 and induce the flows in the variablest i parametrized as

Mt5~Xt ,Y,Z!5~e2g~Y!X0eg~Z!,Y,Z!. ~9!

Proof: Note that the flows specified have the stated vector fields and that

XtZ2YXt5e2g~Y!~X0Z2YX0!eg~Z!

is a rank one matrix ifX0Z2YX0 is. h

Remark 4.1:Given a parametrized flow (Xt ,Y,Z)PMn
1 as previously, the functiont̂M

5(Xt1I ) is another way to write the gauge transformed tau function from Corollary 3.2
M5(X0 ,Y,Z).
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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B. General equations for eigenvalue dynamics

Given any matricesX0 , Y, Z such thatk(X0 ,Y,Z)51 let us defineX5Xt according to~9!.
If we denote the eigenvalues ofXt by $Qi(t)% (1< i<n), to what extent can we describe the
dynamics by intrinsic equations~depending only onQi and their derivatives!?

In what follows we will only be considering the flow under the first time parametert1 , but
will write simply t in order to simplify exposition and will use a ‘‘dot’’ to indicate differentiatio
with respect to this parameter.

We define vectorsv andw by the formula

~X0Z2YX0!5vwT ~10!

and so we have the equations of motion

Ẋ5vwT, Ẏ50, Ż50. ~11!

For convenience we introduce the~time-dependent! matrix U which diagonalizesX and the
logarithms of the eigenvaluesqi

Q5UXU215S Q1 0 0 ¯

0 Q2 0 0 ¯

0 0 Q3 0 ¯

] �

D , qi5 ln~Qi ! ~12!

and define in analogy to~10! the matrices and vectors

Ŷ5UYU21, Ẑ5UZU21, v̂5Uv, ŵ5wU21 ~13!

so that

QẐ2ŶQ5 v̂ŵT. ~14!

Note, in particular, that looking at an individual element of Eq.~14! yields

QiẐi j 2QjŶi j 5 v̂ j ŵi . ~15!

Now, definingM5U̇U21 we have in analogy to~11!

Q̇5@M ,Q#1 v̂ŵT, Ŷ5@M ,Ŷ#, Ẑ5@M ,Ẑ#. ~16!

SinceQ andQ̇ have no off diagonal elements, we get from~16! that

Q̇i5 v̂ i ŵi5q̇ie
qi, ~17!

and

Mi j 5
v̂ j ŵi

Qi2Qj
~ iÞ j !. ~18!

It turns out to be especially useful to write the equations of motion in terms ofqi rather than
Qi because then we find by multiplying~16! by Q21 that
d 02 Aug 2002 to 153.9.48.90. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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S q̇1 0 ¯

] �

0 ¯ q̇n

D 5Q̇Q215M2QMQ211QẐQ212Ŷ. ~19!

SinceQ is diagonal,M2QMQ21 has no diagonal andQẐQ212Ŷ has the same diagonal asẐ

2Ŷ and so

q̇i5~ Ẑ2Ŷ! i i . ~20!

Finally, we can differentiate~20! and use~15!, ~17!, and~18! to find the equation of motion

q̈i5~@M ,Ẑ2Ŷ# ! i i ~21!

5(
kÞ i

~Mik~ Ẑki2Ŷki!2Mki~ Ẑik2Ŷik!! ~22!

5(
kÞ i

S Q̇iQ̇k

Qi~Qi2Qk!
1

v̂kŵi Ẑk,i

Qi
1

Q̇iQ̇k

Qk~Qk2Qi !
1

v̂ i ŵkẐik

Qk
D ~23!

5(
kÞ i

Q̇i Q̇k~Qi1Qk!2~Qi2Qk!~Qi v̂ i ŵkẐik2Qkv̂kŵi Ẑki!

QiQk~Qi2Qk!
. ~24!

C. A special case

We can further simplify~24! assuming thatŵ has no zero component. In that case, we c
utilize additional freedom of conjugation by a diagonal matrix to leaveQ unchanged but modify
U.

In particular, if ŵ is a vector with no zero component, then we can put it in a form wh
w5(1,1,1,...,1) by multiplyingU by the diagonal matrix withwi ’s along its diagonal. Now, in this
‘‘gauge,’’ we know thatŵi51 and so by~17! we know thatv̂ i5Q̇i . This then gives us that

q̈i5(
kÞ i

Q̇i Q̇k~Qi1Qk!2~Qi2Qk!~QiQ̇i Ẑik2QkQ̇kẐki!

QiQk~Qi2Qk!
.

Ideally, we would like to be able to completely eliminateẐki from this equation and have a
‘‘intrinsic’’ equation for the eigenvalues. It seems that this can only be done when certain
tional simplifying assumptions are made.

Suppose that we are in the case that

2lŶ1Ẑ5gI⇒Ẑi j 5lŶi j ~ iÞ j !. ~25!

Combining Eqs.~15! and ~25! we find that

Ẑi j 5
l v̂ j ŵi

lQi1Qj
~ iÞ j !.

Substituting this into~24! and again using~17! one finds the intrinsic equations of motion

q̈i5~l21!2Q̇i (
kÞ i

Q̇k~Qi1Qk!

~Qi2Qk!~lQi2Qk!~lQk2Qi !
. ~26!
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Note that the equations are independent ofg. In the casel521 the dynamics of~26! is the
Ruijsenaars–Schneider model.9

V. COMMENTS AND CONCLUSIONS

It is interesting to note that restrictions onk(X,Y,Z) for triples of square matrices have arise
before in the context of integrable systems. For example, though the notations are differe
key operator identity used by Sakhnovich17 is such a restriction. Perhaps there is a deep con
tion between the results of that work and this one, though the relationship is not immed
apparent to us. A more relevant result was obtained by Nijhoff and Chalykh,18 who used the
condition rank (XZ2qZX)51 for invertible X and Z and scalarq to construct solutions to the
q-difference KP hierarchy. It is reasonable to suppose that their result could now also be ob
as a discretization of the results in the present work in the special caseY5qZ. @Another matrix
approach19 to q-KP made use of the condition rank (XY2qYX1I )51.#

The suggestive appearance of these spaces of matrices in such different contexts wit
study of integrable systems might indicate that we should look more carefully at the man
Mn

k . For instance, we have implicitly constructed a map fromMn
1 to the infinite dimensional

Grassmannian2 Gr1, andMn
k naturally has the structure of an algebraic variety, but so far we h

little understanding of the geometry.
Wilson15 constructs an adelic Grassmannian and a Hilbert scheme from the set of ma

satisfying rank (@X,Z#1I )51. Moreover, the natural symmetry of this set which is manifested
the involution (X,Z)°(ZT,XT) has significance both for the KP hierarchy~bispectrality! and the
Calogero–Moser particle system~self-duality!. So, it is reasonable to wonder how the obvio
symmetries ofMn

k are reflected in the soliton solutions to the KP hierarchy. We have already n
that multiplyingX by a function ofY on the left and a function ofZ on the right corresponds to th
KP flows. Note also that ifk(X,Y,Z)51 andX is invertible thenk(X21,Z,Y)51 as well and that
this triple corresponds to the same KP solution.~In particular, these two points inMn

1 get mapped
to the same point in Grrat.! Similarly, if Y is invertible thenk(Y,X,XZY21)51, but it is not
immediately apparent what symmetry of KP is analogous.

One alternative characterization of Grrat is as the Grassmannian of finite dimensional su
spaces of finitely supported distributions.6 Specifically, to identify a pointWPGrrat it is sufficient
to identify the finitely supported distributions inz which annihilate the normalized Baker
Akhiezer function. We showed in Sec. III B 2 that in the case of nondegenerate soliton
eigenvalues ofY and Z determine the support of the distributions andX determines the coeffi-
cients. We conjecture that this situation holds in general:

Conjecture 5.1:The support of the distributions annihilatingzncM for M5(X,Y,Z)PMn
1 is

the set of eigenvalues of the matricesY and Z with the highest derivative taken at a particul
eigenvalue being bounded by the size of the corresponding Jordan blocks.
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